Advertisement

RGD Peptide–Albumin Conjugate for Endothelization of Electrospun Materials

  • 10 Accesses

Abstract

To improve the endothelization of 3D matrices produced by electrospinning we propose adding cyclo(RGDfC) peptide conjugated to human serum albumin (HSA) (HSA-c(RGDfC)) to the electrospinning solution. HSA-c(RGDfC) has been prepared using a bifunctional linker with N-hydroxysuccinimide and maleimide groups, and the product has been confirmed by 1Н NMR spectroscopy. Electrospun matrices have been fabricated from the solutions of 3% polyurethane Tecoflex EG-80A with 10% HSA and 0.01–1.3% HSA–c(RGDfC) (relative to Tec) in 1,1,1,3,3,3-hexafluoro-2-propanol. The presence of HSA and the cyclo(RGDfC) peptide on the surface of electrospun matrices has been confirmed by FTIR spectroscopy. The structure of matrices has been examined by scanning electron microscopy. The ability of the matrices to facilitate the adhesion of primary human umbilical vein endotheliocytes (HUVECs) has been studied. The presence of HSA–c(RGDfC) conjugate in the matrices enhanced cellular adhesion in a dose dependent manner with a maximum effect at 1% HSA-c(RGDfC).

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Avci-Adali, M., Ziemer, G., and Wendel, H.P., Biotechnol. Adv., 2010, vol. 28, no. 1, pp. 119–129.

  2. 2

    Song, H.-H.G., Rumma, R.T., Ozaki, C.K., Edelman, E.R., and Chen, C.S., Cell Stem Cell, 2018, vol. 22, no. 3, pp. 340–354.

  3. 3

    Ren, X., Feng, Y., Guo, J., Wang, H., Li, Q., Yang, J., Hao, X., Lv, J., Ma, N., and Li, W., Chem. Soc. Rev., 2015, vol. 44, no. 15, pp. 5680–5742.

  4. 4

    Wang, F., Li, Y., Shen, Y., Wang, A., Wang, S., and Xie, T., Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 13 447–13 462.

  5. 5

    Wan, Y., Yang, J., Yang, J., Bei, J., and Wang, S., Biomaterials, 2003, vol. 24, no. 21, pp. 3757–3764.

  6. 6

    Chen, J.-P. and Su, C.-H., Acta Biomater., 2011, vol. 7, no. 1, pp. 234–243.

  7. 7

    Rabiatul, A.R., Lokanathan, Y., Rohaina, C.M., Chowdhury, S.R., Aminuddin, B.S., and Ruszymah, B.H.I., J. Biomater. Sci. Polym. Ed., 2015, vol. 26, no. 17, pp. 1297–1311.

  8. 8

    Zhu, Y., Gao, C., Liu, X., and Shen, J., Biomacromolecules, 2002, vol. 3, no. 6, pp. 1312–1319.

  9. 9

    Zhang, H. and Hollister, S., J. Biomater. Sci. Polym. Ed., 2009, vol. 20, no. 14, pp. 1975–1993.

  10. 10

    Larsen, C.C., Kligman, F., Kottke-Marchant, K., and Marchant, R.E., Biomaterials, 2006, vol. 27, no. 28, pp. 4846–4855.

  11. 11

    Wang, Z., Wang, H., Zheng, W., Zhang, J., Zhao, Q., Wang, S., Yang, Z., and Kong, D., Chem. Commun., 2011, vol. 47, no. 31, pp. 8901–8903.

  12. 12

    Hubbell, J.A., Massia, S.P., Desai, N.P., and Drumheller, P.D., Bio/Technology, 1991, vol. 9, no. 6, pp. 568–572.

  13. 13

    Gonzalez, A.L., Berger, C.L., Remington, J., Girardi, M., Tigelaar, R.E., and Edelson, R.L., Clin. Exp. Immunol., 2014, vol. 175, no. 3, pp. 449–457.

  14. 14

    Zhu, L.-P., Jiang, J.-H., Zhu, B.-K., and Xu, Y.-Y., Colloids Surf., 2011, vol. 86, no. 1, pp. 111–118.

  15. 15

    Chernonosova, V.S., Kvon, R.I., Stepanova, A.O., Larichev, Y.V., Karpenko, A.A., Chelobanov, B.P., Kiseleva, E.V., and Laktionov, P.P., Polym. Adv. Technol., 2017, vol. 28, no. 7, pp. 819–827.

  16. 16

    Marastoni, M., Salvadori, S., Scaranari, V., Spisani, S., Reali, E., Traniello, S., and Tomatis, A., Arzneimittelforschung, 1994, vol. 44, no. 9, pp. 1073–1076.

  17. 17

    Kumagai, H., Tajima, M., Ueno, Y., Giga-Hama, Y., and Ohba, M., Biochem. Biophys. Res. Commun., 1991, vol. 177, no. 1, pp. 74–82.

  18. 18

    Cardarelli, P.M., Yamagata, S., Taguchi, I., Gorcsan, F., Chiang, S.L., and Lobl, T., J. Biol. Chem., 1992, vol. 267, no. 32, pp. 23 159–23 164.

  19. 19

    Temming, K., Lacombe, M., Hoeven, P., Prakash, J., Gonzalo, T., Dijkers, E.C.F., Orfi, L., Keri, G., Poelstra, K., Molema, G., and Kok, R.J., Bioconjug. Chem., 2006, vol. 17, no. 5, pp. 1246–1255.

  20. 20

    Geiger, B., Spatz, J.P., and Bershadsky, A.D., Nat. Rev. Mol. Cell Biol., 2009, vol. 10, p. 21.

  21. 21

    Friedrichs, B., Food/Nahrung, 1997, vol. 41, no. 6, p. 382.

  22. 22

    Catto, V., Fare, S., Cattaneo, I., Figliuzzi, M., Alessandrino, A., Freddi, G., Remuzzi, A., and Cristina, M., Mater. Sci. Eng., vol. 54, pp. 101–111.

  23. 23

    Chernonosova, V.S., Kvon, R.I., Kiseleva, E.V., Stepanova, A.O., and Laktionov, P.P., Biomed. Khim., 2017, vol. 63, no. 1, pp. 32–38.

  24. 24

    Kuznetsov, K.A., Stepanova, A.O., Kuznetsov, N.A., Chernonosova, V.S., Kharkova, M.V., Romanova, I.V., Karpenko, A.A., and Laktionov, P.P., Int. J. Polym. Mater. Polym. Biomater., 2019, vol. 68, nos. 1–3, pp. 27–33.

  25. 25

    Chernonosova, V.S., Gostev, A.A., Gao, Y., Chesalov, Y.A., Shutov, A.V., Pokushalov, E.A., Karpenko, A.A., and Laktionov, P.P., Biomed. Res. Int., 2018, pp. 1–10.

  26. 26

    Chernonosova, V.S., Gostev, A.A., Chesalov, Y.A., Karpenko, A.A., Karaskov, A.M., and Laktionov, P.P., Int. J. Polym. Mater. Polym. Biomater., 2019, vol. 68, nos. 1–3, pp. 34–43.

  27. 27

    Tiwari, A.P., Joshi, M.K., Park, C.H., and Kim, C.S., J. Nanosci. Nanotechnol., 2017, vol. 18, no. 1, pp. 529–537.

  28. 28

    Roberts, C., Chen, C.S., Mrksich, M., Martichonok, V., Ingber, D.E., and Whitesides, G.M., J. Am. Chem. Soc., 1998, vol. 120, no. 26, pp. 6548–6555.

  29. 29

    Fittkau, M.H., Zilla, P., Bezuidenhout, D., Lutolf, M.P., Human, P., Hubbell, J.A., and Davies, N., Biomaterials, 2005, vol. 26, no. 2, pp. 167–174.

  30. 30

    Tugulu, S., Silacci, P., Stergiopulos, N., and Klok, H.A., Biomaterials, 2007, vol. 28, no. 16, pp. 2536–2546.

  31. 31

    Bodin, A., Ahrenstedt, L., Fink, H., Brumer, H., Risberg, B., and Gatenholm, P., Biomacromolecules, 2007, vol. 8, no. 12, pp. 3697–3704.

  32. 32

    Fussell, G.W. and Cooper, S.L., J. Biomed. Mater. Res., Part A, 2004, vol. 70, no. 2, pp. 265–273.

  33. 33

    Chan, B.P., Reichert, W.M., and Truskey, G.A., Biotechnol. Progr., 2004, vol. 20, no. 2, pp. 566–575.

  34. 34

    Petrie, T.A., Capadona, J.R., Reyes, C.D., and Garcia, A.J., Biomaterials, 2006, vol. 27, no. 31, pp. 5459–5470.

  35. 35

    Hersel, U., Dahmen, C., and Kessler, H., Biomaterials, 2003, vol. 24, no. 24, pp. 4385–4415.

  36. 36

    Oh, J.H., Lee, J.S., Park, K.M., Moon, H.T., and Park, K.D., Macromol. Res., 2012, vol. 20, no. 11, pp. 1150–1155.

  37. 37

    Ju, Y.M., Choi, J.S., Atala, A., Yoo, J.J., and Lee, S.J., Biomaterials, 2010, vol. 31, no. 15, pp. 4313–4321.

  38. 38

    Valence, S.De., Tille, J.C., Giliberto, J.P., Mrowczynski, W., Gurny, R., Walpoth, B.H., and Moller, M., Acta Biomater., 2012, vol. 8, no. 11, pp. 3914–3920.

  39. 39

    Milleret, V., Hefti, T., Hall, H., Vogel, V., and Eberli, D., Acta Biomater., 2012, vol. 8, no. 12, pp. 4349–4356.

  40. 40

    Antonova, L.V., Seifalian, A.M., Kutikhin, A.G., Sevostyanova, V.V., Krivkina, E.O., Mironov, A.V., Burago, A.Y., Velikanova, E.A., Matveeva, V.G., Glushkova, T.V., Sergeeva, E.A., Vasyukov, G.Y., Kudryavtseva, Y.A., Barbarash, O.L., and Barbarash, L.S., Front. Pharmacol., 2016, vol. 7.

  41. 41

    Chironi, G., Walch, L., Pernollet, M.-G., Gariepy, J., Levenson, J., Rendu, F., and Simon, A., Atherosclerosis, 2007, vol. 191, no. 1, pp. 115–120.

  42. 42

    Wang, X., Yan, C., Ye, K., He, Y., Li, Z., and Ding, J., Biomaterials, 2013, vol. 34, no. 12, pp. 2865–2874.

  43. 43

    Arnold, M., Cavalcanti-Adam, E.A., Glass, R., Blummel, J., Eck, W., Kantlehner, M., Kessler, H., and Spatz, J.P., ChemPhysChem, 2004, vol. 5, no. 3, pp. 383–388.

  44. 44

    Janatova, J., Fuller, J.K., and Hunter, M.J., J. Biol. Chem., 1968, vol. 243, no. 13, pp. 3612–3622.

  45. 45

    Peters, T., San Diego: Academic, 1996.

  46. 46

    Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R., J. Clin. Invest., 1973, vol. 52, no. 11, pp. 2745–2756.

Download references

ACKNOWLEDGMENTS

The authors would like to thank The Joint Access Center for Microscopy of Biological Objects with the Siberian Branch of the Russian Academy of Sciences (http://www.bionet.nsc.ru/microscopy/) for the use of equipment.

FUNDING

The study was supported by the Russian Science Foundation (project no. 18-15-00080) and in part of modification of HSA by the с(RGDfC) Peptide by Russian State funded budget project of ICBFM SB RAS no. AAAA-A17-117020210026-2.

Author information

Correspondence to A. V. Cherepanova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

In the course of the study, all ethical standards were observed.

Conflict of Interests

The authors declare that there is no conflict of interest.

Additional information

Translated by S. Sidorova

Abbreviations: HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol; HSA, human serum albumin; VG, vascular grafts; HUVEC, human umbilical vein endothelial cells.

Corresponding author: phone: +7(383)363-51-44; e-mail: a_cher@niboch.nsc.ru.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherepanova, A.V., Akisheva, D., Popova, T.V. et al. RGD Peptide–Albumin Conjugate for Endothelization of Electrospun Materials. Russ J Bioorg Chem 45, 793–802 (2019). https://doi.org/10.1134/S1068162019060116

Download citation

Keywords:

  • electrospinning
  • vascular grafts
  • RGD peptide
  • endothelization
  • protein modification
  • human serum albumin
  • cell adhesion receptors