Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 647–655 | Cite as

Effective Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 Based on Monoterpenoids as Potential Agents for Antitumor Therapy

  • A. A. Chepanova
  • N. S. Li-Zhulanov
  • A. S. Sukhikh
  • A. Zafar
  • J. Reynisson
  • A. L. Zakharenko
  • O. D. Zakharova
  • D. V. Korchagina
  • K. P. Volcho
  • N. F. Salakhutdinov
  • O. I. LavrikEmail author


Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the important DNA repair enzymes responsible for the repair of DNA damage caused by anticancer drugs, such as topotecan. In this regard, enzyme activity is one of the possible causes of tumor resistance to chemotherapy, and the use of inhibitors of this enzyme is considered as a promising adjuvant therapy. We have obtained a number of new isomeric naphthyl derivatives of thiophenyl octahydro-2H-chromene, the structure of one of which is confirmed by X-ray structural analysis. Based on molecular modeling data, the structure of the ligand-Tdp1 complex has been proposed. All compounds obtained inhibit Tdp1 at a concentration of about 2 μM. Low toxicity of three compounds was shown, which makes them promising candidates for the development of accompanying cancer therapy.


tyrosyl-DNA phosphodiesterase 1 inhibitors topotecan octahydro-2H-chromene cytotoxicity 



The authors would like to thank the Multi-Access Chemical Research Center SB RAS for spectral and analytical measurements. The А-549 cell line was obtained from Collection of Vertebrate Cell Cultures of the Institute of Cytology, Russian Academy of Sciences, St. Petersburg.


This study was financially supported by the Russian Foundation for Basic Research (grant 19-44-543001 r_mol_a) and the Program of Fundamental Scientific Research of State Academies of Sciences for 2017–2020. (VI.57.1.2, 0309-2016-0001).


This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

Authors declare that they have no conflicts of interests.


  1. 1.
    Interthal, H., Pouliott, J.J., and Champoux, J.J., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 12 009–12 014.CrossRefGoogle Scholar
  2. 2.
    Yang, S.W., Burgin, A.B., Huizenga, B.N., Robertson, C.A., Yao, K.C., Nash, H.A., and Nash, H.A., Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 11 534–11 539.CrossRefGoogle Scholar
  3. 3.
    Pommier, Y., Nat. Rev. Cancer, 2006, vol. 6, pp. 789–802.CrossRefGoogle Scholar
  4. 4.
    Ben Hassine, S. and Arcangioli, B., EMBO J., 2009, vol. 28, pp. 632–640.CrossRefGoogle Scholar
  5. 5.
    Wang, P., Elsayed, M.S.A., Plescia, C.B., Ravji, A., Redon, C.E., Kiselev, E., Marchand, C., Zeleznik, O., Agama, K., Pommier, Y., et al., J. Med. Chem., 2017, vol. 60, pp. 3275–3288.CrossRefGoogle Scholar
  6. 6.
    Tian, L.-W., Feng, Y., Tran, T.D., Shimizu, Y., Pfeifer, T., Vu, H.T., and Quinn, R.J., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 4007–4010.CrossRefGoogle Scholar
  7. 7.
    Khomenko, T., Zakharenko, A., Odarchenko, T., Arabshahi, H.J., Sannikova, V., Zakharova, O., Korchagina, D., Reynisson, J., Volcho, K., Salakhutdinov, N., et al., Bioorg. Med. Chem., 2016, vol. 24, pp. 5573–5581.CrossRefGoogle Scholar
  8. 8.
    Zakharenko, A., Luzina, O., Koval, O., Nilov, D., Gushchina, I., Dyrkheeva, N., Svedas, V., Salakhutdinov, N., and Lavrik, O., J. Nat. Prod., 2016, vol. 79, pp. 2961–2967.CrossRefGoogle Scholar
  9. 9.
    Zakharenko, A.L., Khomenko, T.M., Zhukova, S.V., Koval, O.A., Zakharova, O.D., Anarbaev, R.O., Lebedeva, N.A., Korchagina, D.V., Komarova, N.I., Vasiliev, V.G., et al., Bioorg. Med. Chem., 2015, vol. 23, pp. 2044–2052.CrossRefGoogle Scholar
  10. 10.
    Ponomarev, K.Y., Suslov, E.V., Zakharenko, A.L., Zakharova, O.D., Rogachev, A.D., Korchagina, D.V., Zafar, A., Reynisson, J., Nefedov, A.A., Volcho, K.P., et al., Bioorg. Chem., 2018, vol. 76, pp. 392–399.CrossRefGoogle Scholar
  11. 11.
    Antony, S., Marchand, C., Stephen, A.G., Thibaut, L., Agama, K.K., Fisher, R.J., and Pommier, Y., Nucleic Acids Res., 2007, vol. 35, pp. 4474–4484.CrossRefGoogle Scholar
  12. 12.
    Huang, S.N., Pommier, Y., and Marchand, C., Expert Opin. Ther. Pat., 2011, vol. 21, pp. 1285–1292.CrossRefGoogle Scholar
  13. 13.
    Salomatina, O.V., Popadyuk, I.I., Zakharenko, A.L., Zakharova, O.D., Fadeev, D.S., Komarova, N.I., Reynisson, J., Arabshahi, H.J., Chand, R., Volcho, K.P., et al., Molecules, 2018, vol. 23, p. 679.CrossRefGoogle Scholar
  14. 14.
    Li-Zhulanov, N.S., Zakharenko, A.L., Chepanova, A.A., Patel, J., Zafar, A., Volcho, K.P., Salakhutdinov, N.F., Reynisson, J., Leung, I.K.H., and Lavrik, O.I., Molecules, 2018, vol. 23, p. 2468.CrossRefGoogle Scholar
  15. 15.
    Mozhaitsev, E.E., Zakharenko, A.L., Suslov, E.V., Korchagina, D.V., Zakharova O.D., Vasil’eva, I.A., Chepanova, A.A., Black, E., Patel, J., Chand, R., Reynisson, J., Leung, I.K.H., Volcho, K.P., Salakhutdinov, N.F., and Lavrik, O.I., Anti-Cancer Agents Med. Chem., 2019, vol. 19, pp. 463–472.CrossRefGoogle Scholar
  16. 16.
    Zakharenko, A.L., Luzina, O.A., Sokolov, D.N., Kaledin, V.I., Nikolin, V.P., Popova, N.A., Patel, J., Zakharova, O.D., Chepanova, A.A., Zafar, A., Reynisson, J., Leung, E., Leung, I.K.-H., Volcho, K.P., Salakhutdinov, N.F., and Lavrik, O.I., Eur. J. Med. Chem., 2019, vol. 161, pp. 581–593.CrossRefGoogle Scholar
  17. 17.
    Zakharova, O., Luzing, O., Zakharenko, A., Sokolov, D., Filimonov, A., Dyrkheeva, N., Chepanova, A., Ilina, E., Ilyina, A., Klabenkova, K., Chelobanov, B., Stetsenko, D., Zafar, A., Eurtivong, Ch., Reynisson, J., Volcho, K., Salakhutdinov, N., and Lavrik, O., Bioorg. Med. Chem., 2018, vol. 26, pp. 4470–4480.CrossRefGoogle Scholar
  18. 18.
    Zakharenko, A., Dyrkheeva, N., and Lavrik, O., Med. Res. Rev., 2019, vol. 39, pp. 1427–1441.CrossRefGoogle Scholar
  19. 19.
    Nazimova, E., Pavlova, A., Mikhalchenko, O., Il’ina, I., Korchagina, D., Tolstikova, T., Volcho, K., and Salakhutdinov, N., Med. Chem. Res., 2016, vol. 25, no. 7, pp. 1369–1383.CrossRefGoogle Scholar
  20. 20.
    Comeaux, E.Q. and Van Waardenburg, R.C., Drug Metab. Rev., 2014, vol. 46, pp. 494–507.CrossRefGoogle Scholar
  21. 21.
    Watanabe, T., Takeuchi, T., Otsuka, M., Tanaka, S., and Umezawa, K., J. Antibiot. (Tokyo), 1995, vol. 48, pp. 1460–1466.CrossRefGoogle Scholar
  22. 22.
    Yan, L., Yan, C., Qian, K., Su, H., Kofsky-Wofford, S.A., Lee, W.C., Zhao, X., Ho, M.C., Ivanov, I., and Zheng, Y.G., J. Med. Chem., 2014, vol. 57, pp. 2611–2622.CrossRefGoogle Scholar
  23. 23.
    Antony, S., Marchand, C., Stephen, A.G., Thibaut, L., Agama, K.K., Fisher, R.J., and Pommier, Y., Nucleic Acids Res., 2007, vol. 35, pp. 4474–4484.CrossRefGoogle Scholar
  24. 24.
    Marchand, C., Lea, W.A., Jadhav, A., Dexheimer, T.S., Austin, C.P., Inglese, J., Pommier, Y., and Simeonov, A., Cancer Ther., 2009, vol. 8, pp. 240–248.CrossRefGoogle Scholar
  25. 25.
    Davies, D.R., Interthal, H., Champoux, J.J., and Hol, W.G.J., J. Mol. Biol., 2003, vol. 324, pp. 917–932.CrossRefGoogle Scholar
  26. 26.
    Jones, G., Willet, P., Glen, R.C., Leach, A.R., and Taylor, R., J. Mol. Biol., 1997, vol. 267, pp. 727–748.CrossRefGoogle Scholar
  27. 27.
    Arabshahi, H.J., van Rensburg, M., Pilkington, L.I., Jeon, C.Y., Song, M., Gridel, L.-M., Leung, E., Barker, D., Vuica-Ross, M., Volcho, K.P., Zakharenko, A.L., Lavrik, O.I., and Reynisson, J., Med. Chem. Comm., 2015, vol. 6, no. 11, pp. 1987–1997.CrossRefGoogle Scholar
  28. 28.
    Lipinski, C.A., Drug Discov. Today Technol., 2004, vol. 1, pp. 337–341.CrossRefGoogle Scholar
  29. 29.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, pp. P. 339–341.Google Scholar
  30. 30.
    Sheldrick, G.M.,Acta Crystallogr., 2015, vol. A71, pp. 3–8.Google Scholar
  31. 31.
    Sheldrick, G.M., Acta Crystallogr., 2015, vol. C71, pp. 3–8.Google Scholar
  32. 32.
    Allen, F.H., Acta Crystallogr., 2002, vol. B58, no. 3-1, pp. 380–388.Google Scholar
  33. 33.
    Lebedeva, N.A., Rechkunova, N.I., and Lavrik, O.I., FEBS Lett., 2011, vol. 585, pp. 683–686.CrossRefGoogle Scholar
  34. 34.
    Mosmann, T., J. Immunol. Meth., 1983, vol. 65, pp. 55–63.CrossRefGoogle Scholar
  35. 35.
    GOLD v5.4.0, CCDC Software Ltd., Cambridge, UK, 2015.Google Scholar
  36. 36.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acids Res., 2000, vol. 28, pp. 235–242.CrossRefGoogle Scholar
  37. 37.
    Berman, H., Henrick, K., and Nakamura, H., Nat. Struct. Biol., 2003, vol. 10, p. 980.CrossRefGoogle Scholar
  38. 38.
    Limited, F. Version FJ 2.6, 2000–2007.Google Scholar
  39. 39.
    Eldridge, M.D., Murray, C., Auton, T.R., Paolini, G.V., and Mee, P.M., J. Comp. Aid. Mol. Design, 1997, vol. 11, pp. 425–445.CrossRefGoogle Scholar
  40. 40.
    Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., and Taylor, R.D., Proteins, 2003, vol. 52, no. 4, pp. 609–623.CrossRefGoogle Scholar
  41. 41.
    Korb, O., Stützle, T., and Exner, T.E., J. Chem. Inf. Model., 2009, vol. 49, pp. 84–96.CrossRefGoogle Scholar
  42. 42.
    Mooij, W.T.M. and Verdonk, M.L., Proteins, 2005, vol. 61, pp. 272–287.CrossRefGoogle Scholar
  43. 43.
    QikProp QikProp, Schrödinger, LLC, New York, NY, 2017, QikProp, Schrödinger, LLC, New York, NY, 2017.Google Scholar
  44. 44.
    Ioakimidis, L., Thoukydidis, L., Naeem, S., Mirza, A., and Reynisson, J., QSAR Comb. Sci., 2008, vol. 27, pp. 445–456.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Chepanova
    • 1
  • N. S. Li-Zhulanov
    • 2
    • 3
  • A. S. Sukhikh
    • 3
    • 6
  • A. Zafar
    • 4
  • J. Reynisson
    • 5
  • A. L. Zakharenko
    • 1
  • O. D. Zakharova
    • 1
  • D. V. Korchagina
    • 2
  • K. P. Volcho
    • 2
    • 3
  • N. F. Salakhutdinov
    • 2
    • 3
  • O. I. Lavrik
    • 1
    • 3
    Email author
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Russian Academy of SciencesNovosibirskRussia
  2. 2.Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.School of Chemical Sciences, University of AucklandAucklandNew Zealand
  5. 5.School of Pharmacy, Keele University, Hornbeam BuildingKeeleUnited Kingdom
  6. 6.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations