Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 535–544 | Cite as

Effect of Cys34 Oxidation State of Albumin on Its Interaction with Paraoxon according to Molecular Modeling Data

  • D. A. BelinskaiaEmail author
  • M. A. Terpilovskii
  • A. A. Batalova
  • N. V. Goncharov
Article
  • 7 Downloads

Abstract

The effect of the Cys34 oxidation state in human serum albumin on its binding and catalytic activity towards paraoxon was investigated using molecular modeling methods. Three levels of the cysteine oxidation were considered: (1) Cys34 is reduced, (2) Cys34 is oxidized to sulfenic acid, and (3) Cys34 is oxidized to sulfinic acid. The conformational characteristics of the complexes of albumin with paraoxon bound in Sudlow sites I and II were studied by the molecular dynamics method. The possibility of a phosphorylation reaction was estimated by the distance between the phosphorus atom of paraoxon and the hydroxyl oxygen atom of the catalytic tyrosines in Sudlow sites I and II. The values of free binding energy of the albumin–paraoxon complexes were estimated using the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach. According to the data obtained, cysteine oxidation does not affect the possibility of an esterase reaction in Sudlow site I. Modification of Cys34 changes the conformation of Sudlow site I and the position of paraoxon within the site but does not affect the affinity of the ligand to the site. It has been hypothesized that lack of dependence of binding efficiency on the conformation of the site may be due to the small size and conformational mobility of paraoxon molecule, and such an effect will not be observed for more massive and rigid molecules. Modification of Cys34 has no significant effect on the conformation of Sudlow site II. In the oxidized forms of albumin, the productive conformation of the paraoxon molecule in Sudlow site II is more stable, therefore, the probability of the phosphorylation reaction is higher. The oxidation of Cys34 does not have a significant effect on the binding activity of Sudlow site II towards paraoxon.

Keywords:

human serum albumin mercaptoalbumin paraoxon molecular dynamics free binding energy 

Notes

FUNDING

The work was performed as a part of the State Assignment No. AAAA-A18-118012290142-9 in partial support of the Russian Foundation for Basic Research, project No. 18-015-00304.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving people and animals as research objects.

Conflict of Interest

The authors declare no conflict of interest.

REFERENCES

  1. 1.
    Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., and Ascenzi, P., IUBMB Life, 2005, vol. 57, pp. 787–796.CrossRefGoogle Scholar
  2. 2.
    Goncharov, N.V., Belinskaya, D.A., Ukolov, A.I., and Razygraev, A.V., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 113–124.CrossRefGoogle Scholar
  3. 3.
    Radilov, A., in Handbook of the Toxicology of Chemical Warfare Agents, Gupta, R.C., Ed., Oxford: Elsevier, 2009, pp. 69–91.Google Scholar
  4. 4.
    Li, B., Nachon, F., Froment, M.T., Verdier, L., Debouzy, J.C., Brasme, B., Gillon, E., Schopfer, L.M., Lockridge, O., and Masson, P., Chem. Res. Toxicol., 2008, vol. 21, pp. 421–431.CrossRefGoogle Scholar
  5. 5.
    John, H., Breyer, F., Thumfart, J.O., Hochstetter, H., and Thiermann, H., Anal. Bioanal. Chem., 2010, vol. 398, pp. 2677–2691.CrossRefGoogle Scholar
  6. 6.
    Sogorb, M.A. and Vilanova, E., Chem. Biol. Interact., 2010, vol. 187, pp. 325–329.CrossRefGoogle Scholar
  7. 7.
    Goncharov, N.V., Terpilovskii, M.A., Belinskaya, D.A., Shmurak, V.I., and Avdonin, P.V., J. Evol. Biochem. Physiol., 2017, vol. 53, pp. 271–281.CrossRefGoogle Scholar
  8. 8.
    Lee, P. and Wu, X., Curr. Pharm. Des., 2015, vol. 21, pp. 1862–1865.CrossRefGoogle Scholar
  9. 9.
    Belinskaia, D.A., Taborskaya, K.I., Goncharov, N.V., and Avdonin, P.V., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 359–367.CrossRefGoogle Scholar
  10. 10.
    Belinskaia, D.A., Terpilovskii, M.A., Batalova, A.A., and Goncharov, N.V., J. Evol. Biochem. Physiol., 2019, vol. 55 (in press).Google Scholar
  11. 11.
    Grigoryan, H., Li, H., Iavarone, A.T., Williams, E.R., and Rappaport, S.M., Chem. Res. Toxicol., 2012, vol. 25, pp. 1633–1642.CrossRefGoogle Scholar
  12. 12.
    Anraku, M., Chuang, V.T., Maruyama, T., and Otagiri, M., Biochim. Biophys. Acta, 2013, vol. 1830, pp. 5465–5472.CrossRefGoogle Scholar
  13. 13.
    Magzal, F., Sela, S., Szuchman-Sapir, A., Tamir, S., Michelis, R., and Kristal, B., PLoS One, 2017, vol. 12. e0177799.CrossRefGoogle Scholar
  14. 14.
    Bertucci, C., Nanni, B., Raffaelli, A., and Salvadori, P., J. Pharm. Biomed. Anal., 1998, vol. 18, pp. 127–136.CrossRefGoogle Scholar
  15. 15.
    Oettl, K. and Stauber, R.E., Br. J. Pharmacol., 2007, vol. 151, pp. 580–590.CrossRefGoogle Scholar
  16. 16.
    Suzuki, Y., Suda, K., Matsuyama, Y., Era, S., and Soejima, A., Clin Nephrol., 2014, vol. 82, pp. 320–325.CrossRefGoogle Scholar
  17. 17.
    Nagumo, K., Tanaka, M., Chuang, V.T., Setoyama, H., Watanabe, H., Yamada, N., Kubota, K., Tanaka, M., Matsushita, K., Yoshida, A., Jinnouchi, H., Anraku, M., Kadowaki, D., Ishima, Y., Sasaki, Y., et al., PLoS One, 2014, vol. 9. e85216.CrossRefGoogle Scholar
  18. 18.
    Klammt, S., Mitzner, S., Stange, J., Brinkmann, B., Drewelow, B., Emmrich, J., Liebe, S., and Schmidt, R., Eur. J. Gastroenterol. Hepatol., 2007, vol. 19, pp. 257–263.CrossRefGoogle Scholar
  19. 19.
    The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, O’Neil, M.J., Ed., 15th ed., Cambridge: Royal Society of Chemistry, 2013.Google Scholar
  20. 20.
    Belinskaya, D.A., Taborskaya, K.I., Goncharov, N.V., Shmurak, V.I., Avdonin, P.P., and Avdonin, P.V., J. Evol. Bochem. Physiol., 2017, vol. 53, pp. 191–199.CrossRefGoogle Scholar
  21. 21.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acids Res., 2000, vol. 28, pp. 235–242.CrossRefGoogle Scholar
  22. 22.
    Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A.A., and Otagiri, M., J. Mol. Biol., 2005, vol. 353, pp. 38–52.CrossRefGoogle Scholar
  23. 23.
    McGrath, A.J., Garrett, G.E., Valgimigli, L., and Pratt, D.A., J. Am. Chem. Soc., 2010, vol. 132, pp. 16 759–16 761.CrossRefGoogle Scholar
  24. 24.
    Ali, S.T., Karamat, S., Kona, J., and Fabian, W.M., J. Phys. Chem. A, 2010, vol. 114, pp. 12 470–12 478.CrossRefGoogle Scholar
  25. 25.
    Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J., J. Comput. Chem., 2005, vol. 26, pp. 1701–1718.CrossRefGoogle Scholar
  26. 26.
    Jensen, J.H., Molecular Modeling Basics, Boca Raton: CRC Press, 2010.CrossRefGoogle Scholar
  27. 27.
    Jacob, R.B., Michaels, K.C., Anderson, C.J., Fay, J.M., and Dokholyan, N.V., Sci. Rep., 2016, vol. 6. e37175.CrossRefGoogle Scholar
  28. 28.
    Goncharov, N.V., Shmurak, V.I., Belinskaia, D.A., Terpilowski, M.A., Jenkins, R.O., and Avdonin, P.V., Molecules, 2017, vol. 22. e1201.CrossRefGoogle Scholar
  29. 29.
    Nolte, W., Hartmann, H., and Ramadori, G., Exp. Clin. Endocrinol. Diabetes, 1995, vol. 103, pp. 63–74.CrossRefGoogle Scholar
  30. 30.
    Lotosh, N.Yu., Savel’ev, S.V., and Selishcheva, A.A., Russ. J. Bioorg. Chem., 2016, vol. 42, pp. 624–630.CrossRefGoogle Scholar
  31. 31.
    Jacobsen, J. and Brodersen, R., J. Biol. Chem., 1983, vol. 258, pp. 6319–6326.PubMedGoogle Scholar
  32. 32.
    Uchida, H. and Hanano, M., Chem. Pharm. Bull., 1974, vol. 22, pp. 1571–1579.CrossRefGoogle Scholar
  33. 33.
    Jang, B.K., Clin. Mol. Hepatol., 2012, vol. 18, pp. 357–359.CrossRefGoogle Scholar
  34. 34.
    Liu, X., Zhang, H., and Liang, J., Hepatogastroenterology, 2013, vol. 60, pp. 343–345.PubMedGoogle Scholar
  35. 35.
    Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F., and Hermans, J., in Intermolecular Forces, Pullman, B., Ed., Dordrecht: Reidel D. Publishing Company, 1981, pp. 331–342.Google Scholar
  36. 36.
    Bussi, G., Donadio, D., and Parrinello, M., J. Chem. Phys., 2007, vol. 126. e014101.CrossRefGoogle Scholar
  37. 37.
    Berendsen, H.J.C., Postma, J.P.M., di Nola, A., van Gunsteren, W.F., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.CrossRefGoogle Scholar
  38. 38.
    Darden, T., York, D., and Pedersen, L., J. Chem. Phys., 1993, vol. 3, pp. 10 089–10 092.CrossRefGoogle Scholar
  39. 39.
    Hess, B., Bekker, H., Berendsen, H.J.C., and Fraaije, J.G.E.M., J. Comput. Chem., 1997, vol. 8, pp. 1463–1473.CrossRefGoogle Scholar
  40. 40.
    Genheden, S. and Ryde, U., Expert Opin. Drug Discov., 2015, vol. 10, pp. 449–461.CrossRefGoogle Scholar
  41. 41.
    Kumari, R. Kumar, R., Open Source Drug Discovery Consortium, and Lynn, A., J. Chem. Inf. Model., 2014, vol. 54, pp. 1951–1962.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Belinskaia
    • 1
    Email author
  • M. A. Terpilovskii
    • 1
  • A. A. Batalova
    • 1
  • N. V. Goncharov
    • 1
    • 2
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Research Institute of Hygiene, Occupational Pathology and Human EcologyLeningrad oblastRussia

Personalised recommendations