Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 608–618 | Cite as

Design and Visualization of DNA/RNA Nanostructures from Branched Oligonucleotides Using Blender Software

  • A. Yu. BakulinaEmail author
  • Z. V. Rad’kova
  • E. A. Burakova
  • E. Benassi
  • T. S. Zatsepin
  • A. A. Fokina
  • D. A. Stetsenko


Recently, three-dimensional nucleic acid nanostructures have attracted great interest, which have been made available through the DNA origami technique. We have proposed a different way of constructing nucleic acid nanoobjects, namely, template-directed assembly employing branched oligonucleotides as templates and building blocks, which include nonnucleotidic linkers, particularly, branching units for connecting three or more oligonucleotide chains. For the design and 3D modelling of such nanostructures as DNA tetrahedron, DNA cube and DNA fullerene C24, we have used Blender software. As we found, Blender not only allows one to visualize complex DNA and RNA nanostructures, but also helps to choose the parameters for their synthesis.


nucleic acids DNA nanotechnology template-directed assembly branched oligonucleotides solid-phase synthesis computer modelling click chemistry 



This work was possible owing to the computation time kindly provided by the Siberian Supercomputer Center (SSCC) SB RAS. The authors are grateful to N.V. Kuchin for technical assistance. E.B. is grateful to Novosibirsk State University and the Advanced Training Program 5-100 of the Ministry of Education and Science of the Russian Federation.


This work was financially supported by the Russian Foundation for Basic Research (grant Nos. 18-29-08062 and 16-03-01055), as well as the Basic Project of the Program of the fundamental scientific research of state academies for 2017–2020. AAAA-A17-117020210024-8 “Therapeutic Nucleic Acids.”


The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare that they have no conflicts of interests.


  1. 1.
    Seeman, N.C., Nature, 2003, vol. 421, pp. 427–431.CrossRefGoogle Scholar
  2. 2.
    Ke, Y., Castro, C., and Choi, J.H., Ann. Rev. Biomed. Res., 2018, vol. 20, pp. 375–401. CrossRefGoogle Scholar
  3. 3.
    Chidchob, P. and Sleiman, H.F., Curr. Opin. Chem. Biol., 2018, vol. 46, pp. 63–70. CrossRefPubMedGoogle Scholar
  4. 4.
    Rothemund, P.W.K., Nature, 2006, vol. 440, pp. 297–302.CrossRefGoogle Scholar
  5. 5.
    Hong, F., Zhang, F., Liu, Y., and Yan, H., Chem. Rev., 2017, vol. 117, no. 20, pp. 12 584–12 620. CrossRefGoogle Scholar
  6. 6.
    Wang, P., Meyer, T.A., Pan, V., Dutta, P.K., and Ke, Y., Chemistry, 2017, vol. 2, pp. 359–382.CrossRefGoogle Scholar
  7. 7.
    Endo, M. and Sugiyama, H., Molecules, 2018, vol. 23, no. 7. E1766. CrossRefPubMedGoogle Scholar
  8. 8.
    Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., and Shih, W.M., Nucleic Acids Res., 2009, vol. 37, no. 15, pp. 5001–5006. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pan, K., Kim, D.-N., Zhang, F., Adendorff, M.R., Yan, H., and Bathe, M., Nat. Commun., 2014, vol. 5, art. 5578. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Madsen, M. and Gothelf, K.V., Chem. Rev., 2019, vol. 119, no. 10, pp. 6384–6458. CrossRefPubMedGoogle Scholar
  11. 11.
    Aviñó, A., Ocampo, S.M., Perales, J.C., and Eritja, R., J. Nucleic Acids, 2011, art. ID 586935.
  12. 12.
    Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q., and Fan, C., ACS Nano, 2011, vol. 5, pp. 8783–8789.CrossRefGoogle Scholar
  13. 13.
    Keum, J.-W. and Bermudez, H., Chem. Commun., 2012, vol. 48, pp. 12 118–12 120.CrossRefGoogle Scholar
  14. 14.
    Parlea, L., Puri, A., Kasprzak, W., Bindewald, E., Zakrevsky, P., Satterwhite, E., Kenya, J., Afonin, K.A., and Shapiro, B.A., ACS Comb. Sci., 2016, vol. 18, pp. 527–547.CrossRefGoogle Scholar
  15. 15.
    Kolb, H.C., Finn, M.G., and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, vol. 40, pp. 2004–2021.CrossRefGoogle Scholar
  16. 16.
    Tornøe, C.W., Christensen, C., and Meldal, M., J. Org. Chem., 2002, vol. 67, pp. 3057–3064.CrossRefGoogle Scholar
  17. 17.
    Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B., Angew. Chem. Int. Ed., 2002, vol. 41, pp. 2596–2599.CrossRefGoogle Scholar
  18. 18.
    Utagawa, E., Ohkubo, A., Sekine, M., and Seio, K., J. Org. Chem., 2007, vol. 72, pp. 8259–8266.CrossRefGoogle Scholar
  19. 19.
    Seio, K., Kanamori, T., and Sekine, M., Curr. Protoc. Nucleic Acid Chem., 2014, vol. 58, unit 2.18.1-19.Google Scholar
  20. 20.
    Griesser, H., Tolev, M., Singh, A., Sabirov, T., Gerlach, C., and Richert, C., J. Org. Chem., 2012, vol. 77, pp. 2703–2717.CrossRefGoogle Scholar
  21. 21.
    Singh, A., Tolev, M., Schilling, C.I., Bräse, S., Griesser, H., and Richert, C., J. Org. Chem., 2012, vol. 77, pp. 2718–2728.CrossRefGoogle Scholar
  22. 22.
    Schwenger, A., Gerlach, C., Griesser, H., and Richert, C., J. Org. Chem., 2014, vol. 79, pp. 11 558–11 566.CrossRefGoogle Scholar
  23. 23.
    Kungurtsev, V., Laakkonen, J., Molina, A.G., and Virta, P., Eur. J. Org. Chem., 2013, pp. 6687–6693.Google Scholar
  24. 24.
    Kungurtsev, V., Virta, P., and Lönnberg, H., Eur. J. Org. Chem., 2013, pp. 7886–7890.Google Scholar
  25. 25.
    Ponomarenko, A.I., Brylev, V.A., Sapozhnikova, K.A., Ustinov, A.V., Prokhorenko, I.A., Zatsepin, T.S., and Korshun, V.A., Tetrahedron, 2016, vol. 72, pp. 2386–2391.CrossRefGoogle Scholar
  26. 26.
    Oliviero, G., Amato, J., Borbone, N., Galeone, A., Petraccone, L., Varra, M., Piccialli, G., and Mayol, L., Bioconjugate Chem., 2006, vol. 17, pp. 889–898.CrossRefGoogle Scholar
  27. 27.
    Oliviero, G., Borbone, N., Amato, J., D’Errico, S., Galeone, A., Piccialli, G., Varra, M., and Mayol, L., Biopolymers, 2009, vol. 91, pp. 466–477.CrossRefGoogle Scholar
  28. 28.
    Oliviero, G., Amato, J., Borbone, N., D’Errico, S., Galeone, A., Mayol, L., Haider, S., Olubiyi, O., Hoorelbeke, B., Balzarini, J., and Piccialli, G., Chem. Commun., 2010, vol. 46, pp. 8971–8973.CrossRefGoogle Scholar
  29. 29.
    Ferreira, R., Alvira, M., Aviñó, A., Gómez-Pinto, I., González, C., Gabelica, V., and Eritja, R., ChemistryOpen, 2012, vol. 1, pp. 106–114.CrossRefGoogle Scholar
  30. 30.
    Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P., Polym. J., 1985, vol. 17, pp. 117–132.CrossRefGoogle Scholar
  31. 31.
    Hawker, C.J. and Frechet, J.M.J., J. Am. Chem. Soc., 1990, vol. 112, pp. 7638–7647.CrossRefGoogle Scholar
  32. 32.
    Hess, R., Blender Foundations: The Essential Guide to Learning Blender 2.6, Focal Press, 2010.Google Scholar
  33. 33.
    Andrei, R.M., Callieri, M., Zini, M.F., Loni, T., Maraziti, G., Pan, M.C., and Zoppè, M., BMC Bioinformatics, 2012, vol. 13, suppl. 4, p. S16.CrossRefGoogle Scholar
  34. 34.
    Mills, M.J.L., Sale, K.L., Simmons, B.A., and Popelier, P.L.A., J. Comput Chem., 2017, vol. 38, pp. 2538–2552.CrossRefGoogle Scholar
  35. 35.
    Azizyan, R.A., Garro, A., Radkova, Z., Anikeenko, A., Bakulina, A., Dumas, C., and Kajava, A.V., J. Mol. Biol., 2018, vol. 430, pp. 3835–3846.CrossRefGoogle Scholar
  36. 36.
    Young, D.D. and Deiters, A., Org. Biomol. Chem., 2007, vol. 5, pp. 999–1005.Google Scholar
  37. 37.
    Lusic, H., Young, D.D., Lively, M.O., and Deiters, A., Org. Lett., 2007, vol. 9, pp. 1903–1906.CrossRefGoogle Scholar
  38. 38.
    Deiters, A., Curr. Opin. Chem. Biol., 2009, vol. 13, pp. 678–686.CrossRefGoogle Scholar
  39. 39.
    Levitt, M., Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, pp. 640–644.CrossRefGoogle Scholar
  40. 40.
    Damaschun, G., Damaschun, H., Misselwitz, R., Pospelov, V.A., Zalenskaya, I.A., Zirwer, D., Muller, J.J., and Vorobev, V.I., Biomed. Biochim. Acta, 1983, vol. 42, pp. 697–703.PubMedGoogle Scholar
  41. 41.
    Nakano, S., Kirihata, N., Fujii, S., Sakai, H., Kuwahara, M., Sawai, H., and Sugimoto, N., Nucleic Acids Res., 2007, vol. 35, pp. 486–494.CrossRefGoogle Scholar
  42. 42.
    Greshnyakov, V.A., Belenkov, E.A., and Berezin, V.M., Kristallicheskaya struktura i svoistva uglerodnykh almazopodobnykh faz (Crystal Structure and Properties of Carbon Diamond-Like Phases), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2012.Google Scholar
  43. 43.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput. Chem., 2004, vol. 25, pp. 1605–1612.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Yu. Bakulina
    • 1
    • 2
    Email author
  • Z. V. Rad’kova
    • 1
    • 2
  • E. A. Burakova
    • 1
    • 3
  • E. Benassi
    • 1
  • T. S. Zatsepin
    • 4
    • 5
  • A. A. Fokina
    • 1
    • 3
  • D. A. Stetsenko
    • 1
    • 3
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.State Research Center of Virology and Biotechnology VECTORKoltsovoRussia
  3. 3.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.Skolkovo Institute of Science and Technology, Innovation Centre SKOLKOVOMoscowRussia
  5. 5.Moscow State UniversityMoscowRussia

Personalised recommendations