Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 566–574 | Cite as

Facile Synthesis of New Hybrid 2-Quinlolinone Derivatives Structures as Anticancer Drugs for Breast Cancer Treatment

  • Safyah B. BakareEmail author


A new series of hybrid 2-quinolinone derivatives were synthesized and confirmed using IR, 1H NMR, 13C NMR, and elemental analyses. The cytotoxic activities of some synthesized hybrid 2-quinolinone derivatives were evaluated on human breast carcinoma cells (MCF-7) using the MTT assay. Cell cycle specificity analysis of the 7-hydroxy-4-methyl-3-bromo-2-oxo-1-(p-chlorobenzoyl) methylquinoline compound revealed cell cycle arrest at the S phase. In addition, this compound showed potent topoisomerase (topo) II inhibitory activity in nano-molar concentration compared to doxorubicin as a reference compound. Also, this compound showed moderate β-tubulin polymerization inhibition activity compared to known tubulin polymerization inhibitor combretastatin A-4.


quinolinone cytotoxicity cell cycle analysis topoisomerase II tubulin combretastatin A-4 



The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare that they have no conflicts of interests.


  1. 1.
    Sheetal, B.M., Ravindra, R.K., Joy, H., Jagadish, D.F., and Gangadhar, Y.M., Med. Chem. Res., 2014, vol. 23, pp. 2727–2735.CrossRefGoogle Scholar
  2. 2.
    Solomon, V.R. and Lee, H., Current Med. Chem., 2011, vol. 18, pp. 1–20.CrossRefGoogle Scholar
  3. 3.
    Sturesh, K., Sandhya, B., and Himanshu, G., Mini. Rev. Med. Chem., 2009, vol. 9, pp. 1648–1654.CrossRefGoogle Scholar
  4. 4.
    Brian, H., Gunjan, G., Keshar, P., Duy, H.H., and Thu, A.N., Anticancer Res., 2010, vol. 30, pp. 3927–3932.Google Scholar
  5. 5.
    Mostafa, M.G. and Mansour, S.A., Acta Pharm., 2015, vol. 65, pp. 271–283.CrossRefGoogle Scholar
  6. 6.
    Vinod, K.P., Mirdula, U., Mrinalini, U., Vishau, D.G., and Meenal, T., Acta Pharm., 2005, vol. 55, pp. 47–56.Google Scholar
  7. 7.
    Hvanjec, M., Kralj, M., Piantanida, I., Sedic, M., Suman, L., Pavelic, K., and Karminski-Zamola, G., J. Med. Chem., 2007, vol. 50, pp. 5696–5711.CrossRefGoogle Scholar
  8. 8.
    Nicolaou, K.C., Gross, J.L., and Kerr, M.A., J. Hetero Cycle Chem., 1996, vol. 33, pp. 735–746.CrossRefGoogle Scholar
  9. 9.
    Bringmann, G., Reichert, Y., and Kane, V., Tetrahedron, 2004, vol. 60, pp. 3539–3574.CrossRefGoogle Scholar
  10. 10.
    Dalla, V.L., Gria, O., Gaspanotto, V., and Ferlin, M.G., Eur. J. Med. Chem., 2008, vol. 43, pp. 429–434.CrossRefGoogle Scholar
  11. 11.
    Meety, Y. and Vierfand, J.M., Bioorg. Med. Chem. Lett., 1997, vol. 7, pp. 961–964.CrossRefGoogle Scholar
  12. 12.
    Alka, P.P. and Sanjay, K.V., Inter.J. Theor. Appl. Sci., 2018, vol. 10, pp. 40–43.Google Scholar
  13. 13.
    Zaki, I., Abdelhameid, M.K., El-Deen, I.M., Abdel Wahab, A.H.A., Ashmawy, A.M., and Mohamed, K.O., Eur. J. Med. Chem., 2018, vol. 156, pp. 563–579.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Education, Shaqra UniversityAl MuzahimiyahSaudi Arabia

Personalised recommendations