Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 833–841 | Cite as

Synthetic Antimicrobial Peptides. II. Antimicrobial and Hemolytic Activity of Cationic Peptides Containing Cysteine Residues with Free Sulfhydryl Groups

  • N. V. AmirkhanovEmail author
  • N. V. Tikunova
  • D. V. Pyshnyi
Article
  • 7 Downloads

Abstract

The antimicrobial and hemolytic activities of R9F2С2 (P1ss), (KFF)32 (P2ss), and (RAhaR)4AhaβAС2 (P3ss) (where Aha is 6-aminohexanoic acid and βA is beta-alanine) synthetic antimicrobial peptides (SAMP) with different amphipathic properties and containing the cysteine residues with free sulfhydryl groups were studied. The introduction of cysteine residues into the composition of SAMP was shown to increase their antimicrobial activity 3–7 times, while their hemolytic activity increased 2–12 times in relation to human erythrocytes for different peptides in different ways, which determined their different selectivity. The P1ss peptide with a linear type of amphipathicity showed the highest antimicrobial activity and high selectivity against the fungus Candida albicans and bacterium Staphylococcus aureus (MIC 0.5 μM; TI 52 μM). The P1ss peptide possessed not only greater antimicrobial activity against pathogenic fungus C. albicans in comparison to the P2ss peptide (MIC 3.9 μM) with the classical helical amphipathicity, but also more than three times lower hemolytic activity (MHC 26 and 8 μM, respectively). Therefore, TI for the P2ss peptide (TI 2.1) turned out to be more than 20 times lower than that for the P1ss peptide. Thus, the P1ss peptide is the most promising antimicrobial preparation among the studied SAMP.

Keywords:

synthetic antimicrobial peptides amphiphilicity amphipathicity sulfhydryl group hemolytic activity selectivity Candida albicans Staphylococcus aureus 

Notes

ACKNOWLEDGMENTS

Microbial strains were obtained from the Collection of Extremophilic Microorganisms and Type Cultures.

FUNDING

This study was supported by the Program of Basic Scientific Research of State Academies of Sciences for years 2017–2020 (project nos. VI.62.1.4, 0309-2016-0004 and VI.55.1.1, 0309-2016-0002).

COMPLIANCE WITH ETHICAL STANDARDS

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare that they have no conflicts of interests.

Statement of Compliance with Standards of Research Involving Humans as Subjects

All procedures performed in studies involving human participants (during blood sampling to test the hemolytic activity of preparations) were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

REFERENCES

  1. 1.
    Amirkhanov, N.V., Tikunova, N.V., and Pyshnyi, D.V., Russ. J. Bioorg. Chem., 2018, vol. 44, no. 5, pp. 492–503.CrossRefGoogle Scholar
  2. 2.
    Bahar, A.A. and Ren, D., Pharmaceuticals (Basel), 2013, vol. 6, no. 12, pp. 1543–1575.CrossRefGoogle Scholar
  3. 3.
    Balandin, S.V. and Ovchinnikova, T.V., Russ. J. Bioorg. Chem., 2016, vol. 42, no. 3, pp. 229–248.CrossRefGoogle Scholar
  4. 4.
    Azimova, V.T., Potaturkina-Nesterova, N.I., and Nesterov, A.S., Modern Probl. Sci. Educ., 2015, no. 1–1. https://science-education.ru/en/article/view?id=17746. Accessed June 17, 2019.Google Scholar
  5. 5.
    Jenssen, H., Hamill, P., and Hancock, R.E., Clin. Microbiol. Rev., 2006, vol. 19, no. 3, pp. 491–511.CrossRefGoogle Scholar
  6. 6.
    Artamonov, A.Yu, Rybakina, E.G., Orlov, D.S, and Korneva, E.A., Vestn. S.-Peterb. Gos. Univ., Ser. 11: Med., 2014, no. 1. https://cyberleninka.ru/article/n/biologicheskaya-aktivnost-i-molekulyarno-kletochnye-mehanizmy-deystviya-antimikrobnyh-peptidov-cheloveka-i-zhivotnyh. Accessed June 17, 2019.Google Scholar
  7. 7.
    Orlov, D.S., Nguyen, T., and Lehrer, R.I., J. Microbiol. Methods, 2002, vol. 49, no. 3, pp. 325–328.CrossRefGoogle Scholar
  8. 8.
    Mercer, D.K. and O’Neil, D.A., Future Med. Chem., 2013, vol. 5, no. 3, pp. 315–337.CrossRefGoogle Scholar
  9. 9.
    Okorochenkov, S.A., Zheltukhina, G.A., and Nebol’sin, V.E., Biochem. (Moscow): Suppl. Ser. B: Biomed. Chem., 2011.Google Scholar
  10. 10.
    Bilikova, K., Huang, S.C., Lin, I.P., Simuth, J., and Peng, C.C., Peptides, 2015, vol. 68, pp. 190–196.CrossRefGoogle Scholar
  11. 11.
    Yeaman, M.R. and Yount, N.Y., Pharmacol. Rev., 2003, vol. 55, no. 1, pp. 27–55.CrossRefGoogle Scholar
  12. 12.
    Balandin, S.V. and Ovchinnikova, T.V., Russ. J. Bioorg. Chem., 2016, vol. 42, no. 4, pp. 343–360.CrossRefGoogle Scholar
  13. 13.
    Panteleev, P.V., Bolosov, I.A., Balandin, S.V., and Ovchinnikova, T.V., J. Pept. Sci., 2015, vol. 21, no. 2, pp. 105–113.CrossRefGoogle Scholar
  14. 14.
    Okorochenkov, S.A., Zheltukhina, G.A., and Nebol’sin, V.E., Biomed. Khim., 2012, vol. 58, no. 2, pp. 131–143.CrossRefGoogle Scholar
  15. 15.
    Neuhaus, F.C. and Baddiley, J., Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 4, pp. 686–723.CrossRefGoogle Scholar
  16. 16.
    Potekhina, N.V., Usp. Biol. Khim., 2006, vol. 46, pp. 225–278.Google Scholar
  17. 17.
    Morris, M., Depollier, J., Mery, J., Heitz, F., and Divita, G., Nat. Biotechnol., 2001, vol. 19, no. 12, pp. 1173–1176.CrossRefGoogle Scholar
  18. 18.
    Hancock, R.E., Lancet, 1997, vol. 349, no. 9049, pp. 418–422.CrossRefGoogle Scholar
  19. 19.
    Piers, K., Brown, M., and Hancock, R., Antimicrob. Agents Chemother., 1994, vol. 38, no. 10, pp. 2311–2316.CrossRefGoogle Scholar
  20. 20.
    Silva, A., Jr. and Teschke, O., Biochim. Biophys. Acta, 2003, vol. 1643, nos. 1–3, pp. 95–103.CrossRefGoogle Scholar
  21. 21.
    Okorochenkov, S.A., Zheltukhina, G.A., and Nebol’sin, V.E., Biomed. Khim., 2012, vol. 58, no. 2, pp. 131–143.CrossRefGoogle Scholar
  22. 22.
    Smirnova, M.P., Afonin, V.G., Shpen’, V.M. Tyagotin, Yu.V., and Kolodkin, N.I., Russ. J. Bioorg. Chem., 2004, vol. 30, no. 5, pp. 409–416.CrossRefGoogle Scholar
  23. 23.
    Vlieghe, P., Lisowski, V., Martinez, J., and Khrestchatisky, M., Drug Discov. Today, 2010, vol. 15, nos. 1–2, pp. 40–56.CrossRefGoogle Scholar
  24. 24.
    Schiffer, M. and Edmundson, A.B., Biophys. J., 1967, vol. 7, no. 2, pp. 121–135.CrossRefGoogle Scholar
  25. 25.
    Jiang, Z., Vasil, A.I., Gera, L., Vasil, M.L., and Hodges, R.S., Chem. Biol. Drug Des., 2011, vol. 77, no. 4, pp. 225–240.CrossRefGoogle Scholar
  26. 26.
    Oren, Z. and Shai, Y., Biochemistry, 1997, vol. 36, no. 7, pp. 1826–1835.CrossRefGoogle Scholar
  27. 27.
    Shai, Y., Biochim. Biophys. Acta, 1999, vol. 1462, nos. 1–2, pp. 55–70.CrossRefGoogle Scholar
  28. 28.
    Jacobsen, F., Mohammadi-Tabrisi, A., Hirsch, T., Mittler, D., Mygind, P.H., Sonksen, C.P., Raventos, D., Kristensen, H.H., Gatermann, S., Lehnhardt, M., Daigeler, A., Steinau, H.U., and Steinstraesser, L., J. Antimicrob. Chemother., 2007, vol. 59, no. 3, pp. 493–498.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Amirkhanov
    • 1
    Email author
  • N. V. Tikunova
    • 1
  • D. V. Pyshnyi
    • 1
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations