Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 431–437 | Cite as

Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing

  • R. N. AmirkhanovEmail author
  • G. A. Stepanov


The discovery of RNA-guided nucleases have enabled to leap forward in genome editing of cells and organisms. These nucleases can be delivered into cells as plasmid DNA, mRNA or ribonucleoprotein complexes (RNPs). The delivery in the form of RNP has some advantages because the target gene editing begins immediately without the process of intracellular synthesis of components and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated protein 9) system assembly. This strategy makes it possible to directly control RNP concentration and to decrease the number of off-targets due to rapid degradation of the complex in the cell. However, the task to develop RNP delivery systems remains unsolved. This review is devoted to RNP delivery into cells and tissues using physical approaches and different carriers. Special attention is paid to novel approaches that improve the RNP delivery efficiency.


CRISPR/Cas9 genome editing ribonucleoprotein complexes delivery 



This study was partly supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0245-2019-0001) and by the Russian Science Foundation (project no. 18-75-10069).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Yin, H., Kauffman, K.J., and Anderson, D.G., Nat. Rev. Drug Discov., 2017, vol. 16, pp. 387–399.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Nemudryi, A.A., Valetdinova, K.R., Medvedev, S.P., and Zakian, S.M., Acta Naturae, 2014, vol. 6, pp. 19–40.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hamann, A., Nguyen, A., and Pannier, A.K., J. Biol. Eng., 2019, vol. 13, p. 7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nelson, C.E. and Gersbach, C.A., Annu. Rev. Chem. Biomol. Eng., 2016, vol. 7, pp. 637–662.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ma, H., Marti-Gutierrez, N., Park, S.W., Wu, J., Lee, Y., Suzuki, K., Koski, A., Ji, D., Hayama, T., Ahmed, R., Darby, H., Van Dyken, C., Li, Y., Kang, E., Park, A.R., et al., Nature, 2017, vol. 548, pp. 413–419.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Van Treuren, T. and Vishwanatha, J.K., PLoS One, 2018, vol. 13, e0204976.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M.F., Walsh, S., Bogorad, R.L., Gao, G., et al., Nat. Biotechnol., 2016, vol. 34, pp. 328–333.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Miller, J.B., Zhang, S., Kos, P., Xiong, H., Zhou, K., Perelman, S.S., Zhu, H., and Siegwart, D.J., Angew Chem. Int. Ed. Engl., 2017, vol. 56, pp. 1059–1063.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Finn, J.D., Smith, A.R., Patel, M.C., Shaw, L., Youniss, M.R., van Heteren, J., Dirstine, T., Ciullo, C., Lescarbeau, R., Seitzer, J., Shah, R.R., Shah, A., Ling, D., Growe, J., Pink, M., et al., Cell Rep., 2018, vol. 22, pp. 2227–2235.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wang, L., Zheng, W., Liu, S., Li, B., and Jiang, X., Chembiochem, 2019, vol. 20, pp. 634–643.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Schumann, K., Lin, S., Boyer, E., Simeonov, D.R., Subramaniam, M., Gate, R.E., Haliburton, G.E., Ye, C.J., Bluestone, J.A., Doudna, J.A., and Marson, A., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 10 437–10 442.CrossRefGoogle Scholar
  12. 12.
    Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., Carte, J., Chen, W., Roark, N., Ranganathan, S., Ravinder, N., and Chesnut, J.D., J. Biotechnol., 2015, vol. 208, pp. 44–53.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A., Wu, Y., and Cui, X., Hum. Gene Ther., 2016, vol. 27, pp. 464–475.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    DeWitt, M.A., Corn, J.E., and Carroll, D., Methods, 2017, vols. 121–122, pp. 9–15.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    DeWitt, M.A., Magis, W., Bray, N.L., Wang, T., Berman, J.R., Urbinati, F., Heo, S.J., Mitros, T., Munoz, D.P., Boffelli, D., Kohn, D.B., Walters, M.C., Carroll, D., Martin, D.I., and Corn, J.E., Sci. Transl. Med., 2016, vol. 8, p. 360ra134.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mir, A., Alterman, J.F., Hassler, M.R., Debacker, A.J., Hudgens, E., Echeverria, D., Brodsky, M.H., Khvorova, A., Watts, J.K., and Sontheimer, E.J., Nat. Commun., 2018, vol. 9, p. 2641.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dastidar, S., Ardui, S., Singh, K., Majumdar, D., Nair, N., Fu, Y., Reyon, D., Samara, E., Gerli, M.F.M., Klein, A.F., De Schrijver, W., Tipanee, J., Seneca, S., Tulalamba, W., Wang, H., et al., Nucleic Acids Res., 2018, vol. 46, pp. 8275–8298.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S., Genome Res., 2014, vol. 24, pp. 1012–1019.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Liu, J., Gaj, T., Yang, Y., Wang, N., Shui, S., Kim, S., Kanchiswamy, C.N., Kim, J.S., and Barbas, C.F., 3rd, Nat. Protoc., 2015, vol. 10, pp. 1842–1859.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lin, S., Staahl, B.T., Alla, R.K., and Doudna, J.A., Elife, 2014, vol. 3. e04766.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gaj, T., Staahl, B.T., Rodrigues, G.M.C., Limsirichai, P., Ekman, F.K., Doudna, J.A., and Schaffer, D.V., Nucleic Acids Res., 2017, vol. 45, e98.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yoshimitsu, Y., Abe, J., and Harayama, S., Biotechnol. Biofuels, 2018, vol. 11, p. 326.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nakagawa, Y., Sakuma, T., Takeo, T., Nakagata, N., and Yamamoto, T., Exp. Anim., 2018, vol. 67, pp. 535–543.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Staahl, B.T., Benekareddy, M., Coulon-Bainier, C., Banfal, A.A., Floor, S.N., Sabo, J.K., Urnes, C., Munares, G.A., Ghosh, A., and Doudna, J.A., Nat. Biotechnol., 2017, vol. 35, pp. 431–434.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hultquist, J.F., Schumann, K., Woo, J.M., Manganaro, L., McGregor, M.J., Doudna, J., Simon, V., Krogan, N.J., and Marson, A., Cell Rep., 2016, vol. 17, pp. 1438–1452.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wu, W., Lu, Z., Li, F., Wang, W., Qian, N., Duan, J., Zhang, Y., Wang, F., and Chen, T., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 1660–1665.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Burger, A., Lindsay, H., Felker, A., Hess, C., Anders, C., Chiavacci, E., Zaugg, J., Weber, L.M., Catena, R., Jinek, M., Robinson, M.D., and Mosimann, C., Development, 2016, vol. 143, pp. 2025–2037.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Han, X., Liu, Z., Jo, M.C., Zhang, K., Li, Y., Zeng, Z., Li, N., Zu, Y., and Qin, L., Sci. Adv., 2015, vol. 1, e1500454.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yen, J., Fiorino, M., Liu, Y., Paula, S., Clarkson, S., Quinn, L., Tschantz, W.R., Klock, H., Guo, N., Russ, C., Yu, V.W.C., Mickanin, C., Stevenson, S.C., Lee, C., and Yang, Y., Sci. Rep., 2018, vol. 8, p. 16 304.CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., and Gao, C., Nat. Commun., 2016, vol. 7, p. 12 617.CrossRefGoogle Scholar
  31. 31.
    Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C., Nat. Commun., 2017, vol. 8, p. 14 261.CrossRefGoogle Scholar
  32. 32.
    Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Mark Cigan, A., Nat. Commun., 2016, vol. 7, p. 13 274.CrossRefGoogle Scholar
  33. 33.
    Woo J.W., Kim J., Kwon S.I., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S., Nat. Biotechnol., 2015, vol. 33, pp. 1162–1164.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., and Lee, G.J., Plant Cell Rep., 2016, vol. 35, pp. 1535–1544.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H., EMBO J., 1982, vol. 1, pp. 841–845.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zimmermann, U., Vienken, J., and Pilwat, G., Bioelectrochem. Bioenerg., 1980, vol. 7, pp. 553–574.CrossRefGoogle Scholar
  37. 37.
    Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G., and Sala, F., Plant Mol. Biol., 1987, vol. 8, pp. 363–373.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yoo, S.D., Cho, Y.H., and Sheen, J., Nat. Protoc., 2007, vol. 2, pp. 1565–1572.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Maas, C. and Werr, W., Plant Cell Rep., 1989, vol. 8, pp. 148–151.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim, H., Kim, S.T., Ryu, J., Kang, B.C., Kim, J.S., and Kim, S.G., Nat. Commun., 2017, vol. 8, p. 14 406.CrossRefGoogle Scholar
  41. 41.
    Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., and Velasco, R., and Nagamangala Kanchiswamy, C., Front. Plant Sci., 2016, vol. 7, p. 1904.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., and Taipale, J., Nat. Med., 2018, vol. 24, pp. 927–930.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Shen, Y., Cohen, J.L., Nicoloro, S.M., Kelly, M., Yenilmez, B., Henriques, F., Tsagkaraki, E., Edwards, Y.J.K., Hu, X., Friedline, R.H., Kim, J.K., and Czech, M.P., J. Biol. Chem., 2018, vol. 293, pp. 17 291–17 305.CrossRefGoogle Scholar
  44. 44.
    Wang, D., Ma, D., Han, J., Kong, L., Li, L.Y., and Xi, Z., Chembiochem., 2018, vol. 19, pp. 2195–2205.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., Maeder, M.L., Joung, J.K., Chen, Z.Y., and Liu, D.R., Nat. Biotechnol., 2015, vol. 33, pp. 73–80.CrossRefGoogle Scholar
  46. 46.
    Li, Y., Bolinger, J., Yu, Glass, Z., Shi, N., Yang, L., Wang, M., and Xu, Q., Biomater. Sci., 2019, vol. 7, pp. 596–606.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mout, R., Ray, M., Yesilbag, TongaG., Lee, Y.W., Tay, T., Sasaki, K., and Rotello, V.M., ACS Nano, 2017, vol. 11, no. 2017, pp. 2452–2458.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lee, K., Conboy, M., Park, H.M., Jiang, F., Kim, H.J., Dewitt, M.A., Mackley, V.A., Chang, K., Rao, A., Skinner, C., Shobha, T., Mehdipour, M., Liu, H., Huang, W.C., Lan, F., et al., Nat. Biomed. Eng., 2017, vol. 1, pp. 889–901.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., Park, H.M., Brenner, R., Murthy, N., and Lee, H.Y., Nat. Biomed. Eng., 2018, vol. 2, pp. 497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Shahbazi, R., Sghia-Hughes, G., Reid, J.L., Kubek, S., Haworth, K.G., Humbert, O., Kiem, H.P., and Adair, J.E., Nat. Mater., 2019, vol. 18, pp. 1124–1132.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sun, W., Ji, W., Hall, J.M., Hu, Q., Wang, C., Beisel, C.L., and Gu, Z., Angew Chem. Int. Ed. Engl., 2015, vol. 54, pp. 12 029–12 033.CrossRefGoogle Scholar
  52. 52.
    Ramakrishna, S., Kwaku, DadA.B., Beloor, J., Gopalappa, R., Lee, S.K., and Kim, H., Genome Res., 2014, vol. 24, pp. 1020–1027.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yin, J., Hou, S., Wang, Q., Bao, L., Liu, D., Yue, Y., Yao, W., and Gao, X., Bioconjug. Chem., 2019, vol. 30, pp. 898–906.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sun, W., Jiang, T., Lu, Y., Reiff, M., Mo, R., and Gu, Z., J. Am. Chem. Soc., 2014, vol. 136, pp. 14 722–14 725.CrossRefGoogle Scholar
  55. 55.
    Rouet, R., Thuma, B.A., Roy, M.D., Lintner, N.G., Rubitski, D.M., Finley, J.E., Wisniewska, H.M., Mendonsa, R., Hirsh, A., de Onate, L., Compte, BarronJ., McLellan, T.J., Bellenger, J., Feng, X., Varghese, A., et al., J. Am. Chem. Soc., 2018, vol. 140, pp. 6596–6603.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kosicki, M., Tomberg, K., and Bradley, A., Nat. Biotechnol., 2018, vol. 36, pp. 765–771.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chavez, A., Pruitt, B.W., Tuttle, M., Shapiro, R.S., Cecchi, R.J., Winston, J., Turczyk, B.M., Tung, M., Collins, J.J., and Church, G.M., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. 3669–3673.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cebrian-Serrano, A. and Davies, B., Mamm. Genome, 2017, vol. 28, pp. 247–261.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Oakes, B.L., Fellmann, C., Rishi, H., Taylor, K.L., Ren, S.M., Nadler, D.C., Yokoo, R., Arkin, A.P., Doudna, J.A., and Savage, D.F., Cell, 2019, vol. 176, pp. 254–267.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zsogon, A., Cermak, T., Naves, E.R., Notini, M.M., Edel, K.H., Weinl, S., Freschi, L., Voytas, D.F., Kudla, J., and Peres, L.E.P., Nat. Biotechnol., 2018.Google Scholar
  61. 61.
    Shaw, W.R. and Catteruccia, F., Nat. Microbiol., 2019, vol. 4, pp. 20–34.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., and Crisanti, A., Nat. Biotechnol., 2018, vol. 36, pp. 1062–1066.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mehravar, M., Shirazi, A., Nazari, M., and Banan, M., Dev. Biol., 2019, vol. 445, pp. 156–162.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Butler, J.R., Ladowski, J.M., Martens, G.R., Tector, M., and Tector, A.J., Int. J. Surg., 2015, pp. 217–222.Google Scholar
  65. 65.
    Kararoudi, M., Hejazi, S.S., Elmas, E., Hellstrom, M., Naeimi Kararoudi, M., Padma, A.M., Lee, D., and Dolatshad, H., Front. Immunol., 2018, vol. 9, p. 1711.CrossRefGoogle Scholar
  66. 66.
    Rodríguez-Rodríguez, D.R., Ramírez-Solís, R., Garza-Elizondo, M.A., Garza-Rodríguez, M.L., and Barrera-Saldaña, H.A., Int. J. Mol. Med., 2019, vol. 43, pp. 1559–1574.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Sokolova, V. and Epple, M., Angew Chem. Int. Ed. Engl., 2008, vol. 47, pp. 1382–1395.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Amirkhanov, R.N., Zarytova, V.F., and Zenkova, M.A., Russ. Chem. Rev., 2017, vol. 86, pp. 113–127.CrossRefGoogle Scholar
  69. 69.
    Petkar, K.C., Chavhan, S.S., Agatonovik-Kustrin, S., and Sawant, K.K., Crit. Rev. Ther. Drug Carrier Syst., 2011, vol. 28, pp. 101–164.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wagner, D.E. and Bhaduri, S.B., Tissue Eng. Part B. Rev., 2012, vol. 18, pp. 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Filippova, J., Matveeva, A., Zhuravlev, E., and Stepanov, G., Biochimie, 2019, vol. 167, pp. 49–60.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.BiolabmixNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations