Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 6, pp 712–723 | Cite as

Study of Total Lipidome of the Sinularia siaesensis Soft Coral

  • T. V. SikorskayaEmail author
  • A. B. Imbs
Article
  • 10 Downloads

Abstract

The rapid development of lipidomics of human and higher animals stimulated the study of the lipidome of certain groups of marine organisms. Soft corals are an integral part of the tropical and cold-water ecosystems of the World Ocean, but there is almost no data on the lipidome of these animals. The total lipidome of a tropical soft coral Sinularia siaesensis (Cnidaria: Anthozoa: Octocorallia: Alcionacea) containing intracellular symbiotic microalgae (zooxanthellae) was studied by gas and liquid chromatography-mass spectrometry. The structure and content of 144 molecular species of the main classes of acyl lipids of this alcyonaria were determined, including waxes, triglycerides (TG), monoalkyldiacylglycerides (MADAG), ethanolamine, choline, serine, and inositol glycerophospholipids (PE, PC, PS, and PI), ceramide aminoethylphosphonate (CAEP), sulfoquinovosyldiacylglyceride (SQDG), and mono- and digalactosyldiacylglycerides (MGDG and DGDG). The main components of S. siaesensis lipids were waxes 16:0/16:0, 16:0/18:0, and 18:0/16:0; TG 16:0/16:0/16:0 and 16:2/16:0/16:0; MADAG 18:0e/16:0/16:0, 16:0e/16:0/18:0, and 16:0e/16:0/16:0; and PS 18:0e/24:5, lyso-PC 18:0e, PE 18:1e/20:4, PC 18:0e/20:4, CAEP 18:2b/16:0, SQDG 14:0/16:0, and PI 18:0/24:5. The dominance of saturated waxes in reserve lipids is a species-specific feature of tropical alcyonarians. Waxes are synthesized in the host organism, and zooxanthellae can increase the proportion of saturated waxes by transferring saturated fatty acids (FA). The residues of polyunsaturated FA (PUFA) are found in the molecules of TG and MADAG, mainly in the sn-1 and sn-2 positions, respectively. Detection of MADAG with residues of marker FA of zooxanthellae (18:0e/18:3/16:0, 18:0e/18:4/16:0, and 16:0e/18:3/16:0) confirms the transfer of PUFA from the symbionts to the host. Tetracosapolyenoic FA, which is a chemotaxonomic markers of octocorals, are concentrated in molecular species of PS and PI. Most molecular species of PE, PC, and PS are in alkylacyl form, while for PI molecules, a diacyl form is characteristic. A significant proportion of MGDG, DGDG, and SQDG points to the importance of zooxanthellae in the formation of the lipid profile of symbiotic soft corals. Determination of the profile of lipid molecular species requires the development of a lipidomic approach in the study of biochemistry and ecology of corals and other cnidarians.

Keywords

lipidomics lipid molecular species lipid markers soft corals symbionts tandem mass-spectrometry 

Abbreviations

WE

wax esters

AA

aliphatic alcohols

HPLC

high-performance liquid chromatography

DGDG

digalactosyldiacylgrycerides

FA

fatty acids

CAEP

ceramideaminoethylphosphonates

MADAG

monoalkyldiacylglycerides

MGDG

monogalactosyldiacylglycerides

MS/MS

tandem mass spectrometry

PUFA

polyunsaturated fatty acids

SQDG

sulfoquinovosyl diacylglycerides

TG

triglycerides

TPA

tetracozapolyenic acids

PI

phosphatidylinositols

PS

phosphatidylserines

PC

phosphatidylcholines

PE

phosphatidylethanolamines

APCI

atmospheric pressure chemical ionization

ESI

electrospray ionization

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spalding, M.D. and Grenfell, A.M., Coral Reefs, 1997, vol. 16, pp. 225–230.CrossRefGoogle Scholar
  2. 2.
    Davy, S.K., Allemand, D., and Weis, V.M., Microbiol. Mol. Biol. Rev., 2012, vol. 76, pp. 229–261.CrossRefGoogle Scholar
  3. 3.
    Sorokin, Y.I., Coral Reef Ecology, Ecological Studies, Berlin: Springer, 1995, vol. 102.Google Scholar
  4. 4.
    Muscatine, L., McCloskey, L.R., and Marian, R.E., Limnol. Oceanogr., 1981, vol. 26, pp. 601–611.CrossRefGoogle Scholar
  5. 5.
    Hoegh-Guldberg, O., Mar. Freshw. Res., 1999, vol. 50, pp. 839–866.CrossRefGoogle Scholar
  6. 6.
    Yamashiro, H., Oku, H., Higa, H., Chinen, I., and Sakai, K., Comp. Biochem. Physiol., 1999, vol. 122B, pp. 397–407.Google Scholar
  7. 7.
    Imbs, A.B., Russ. J. Mar. Biol., 2013, vol. 39, pp. 153–168.CrossRefGoogle Scholar
  8. 8.
    Hamoutene, D., Puestow, T., Miller-Banoub, J., and Wareham, V., Coral Reefs, 2008, vol. 27, pp. 237–246.CrossRefGoogle Scholar
  9. 9.
    Imbs, A.B., Luu, H.V., and Long, P.Q., Chem. Nat. Comp., 2007, vol. 43, pp. 610–611.CrossRefGoogle Scholar
  10. 10.
    Imbs, A.B., Latyshev, N.A., Dautova, T.N., and Latypov, Y.Y., Mar. Ecol. Progr. Ser., 2010, vol. 409, pp. 65–75.CrossRefGoogle Scholar
  11. 11.
    Treignier, C., Grover, R., Ferrier-Pages, C., and Tolosa, I., Limnol. Oceanogr., 2008, vol. 53, pp. 2702–2710.CrossRefGoogle Scholar
  12. 12.
    Latyshev, N.A., Svetashev, V.I., Khung, N.K., and Nga, D.T., Biol. Morya, 1986, no. 3, pp. 52–56.Google Scholar
  13. 13.
    Imbs, A.B., Dang, L.P.T., Rybin, V.G., Nguyen, N.T., and Pham, L.Q., Biochem. Anal. Biochem., 2015, vol. 4, p. 205.Google Scholar
  14. 14.
    Imbs, A.B., Dang, L.P.T., Rybin, V.G., and Svetashev, V.I., Lipids, 2015, vol. 50, pp. 575–589.CrossRefGoogle Scholar
  15. 15.
    Joseph, J.D., Prog. Lipid Res., 1979, vol. 18, pp. 1–30.CrossRefGoogle Scholar
  16. 16.
    Imbs, A.B., Yakovleva, I.M., and Pham, L.Q., Fish. Sci., 2010, vol. 76, pp. 375–380.CrossRefGoogle Scholar
  17. 17.
    Moschidis, M.C., Prog. Lipid Res., 1985, vol. 23, pp. 223–246.CrossRefGoogle Scholar
  18. 18.
    Mukhamedova, K.S. and Glushenkova, A.I., Chem. Nat. Comp., 2000, vol. 36, pp. 329–341.CrossRefGoogle Scholar
  19. 19.
    Awai, K., Matsuoka, R., and Shioi, Y., in Proc. 12th Int. Coral Reef Symp., Cairns, Australia, 2012.Google Scholar
  20. 20.
    Bishop, D.G. and Kenrick, J.R., Lipids, 1980, vol. 15, pp. 799–804.CrossRefGoogle Scholar
  21. 21.
    Tchernov, D., Gorbunov, M.Y., de Vargas, C., Narayan Yadav, S., Milligan, A.J., Häggblom, M., and Falkowski, P.G., Proc. Nat. Acad. Sci. U. S. A., 2004, vol. 101, pp. 13531–13535.CrossRefGoogle Scholar
  22. 22.
    Imbs, A.B., Rybin, V.G., Kharlamenko, V.I., Dang, L.T.F., Nguyen, N.T., Pham, K.M., and Pham, L.Q., Russ. J. Mar. Biol., 2015, vol. 41, pp. 461–467.CrossRefGoogle Scholar
  23. 23.
    Hashimoto, N., Fujiwara, S., Watanabe, K., Iguchi, K., and Tsuzuki, M., Lipids, 2003, vol. 38, pp. 991–997.CrossRefGoogle Scholar
  24. 24.
    Seemann, J., Sawall, Y., Auel, H., and Richter, C., Lipids, 2013, vol. 48, pp. 275–286.CrossRefGoogle Scholar
  25. 25.
    Mueller, C.E., Larsson, A.I., Veuger, B., Middelburg, J.J., and van Oevelen, D., Biogeosci., 2014, vol. 11, pp. 123–133.CrossRefGoogle Scholar
  26. 26.
    Teece, M.A., Estes, B., Gelsleichter, E., and Lirman, D., Limnol. Oceanogr., 2011, vol. 56, pp. 1285–1296.CrossRefGoogle Scholar
  27. 27.
    Papina, M., Meziane, T., and van Woesik, R., Comp. Biochem. Physiol. B, 2003, vol. 135, pp. 533–537.CrossRefGoogle Scholar
  28. 28.
    Imbs, A.B. and Yakovleva, I.M., Coral Reefs, 2012, vol. 31, pp. 41–53.CrossRefGoogle Scholar
  29. 29.
    Rodrigues, L.J., Grottoli, A.G., and Pease, T.K., J. Exp. Mar. Biol. Ecol., 2008, vol. 358, pp. 136–143.CrossRefGoogle Scholar
  30. 30.
    Meyers, P.A., in Proceedings of Third Int. Coral Reef Symp., 1977, vol. 1, pp. 529–536.Google Scholar
  31. 31.
    Imbs, A.B., Polar Biol., 2016, vol. 39, pp. 1511–1514.CrossRefGoogle Scholar
  32. 32.
    Spener, F., Lagarde, M., Geloen, A., and Record, M., Eur. J. Lipid Sci. Tech., 2003, vol. 105, pp. 481–482.CrossRefGoogle Scholar
  33. 33.
    Vítová, M., Goecke, F., Sigler, K., and Rezanka, T., Algal Res., 2016, vol. 13, pp. 218–226.CrossRefGoogle Scholar
  34. 34.
    Rybin, V.G., Imbs, A.B., Demidkova, D.A., and Ermolenko, E.V., Chem. Phys. Lipids, 2017, vol. 202, pp. 55–61.CrossRefGoogle Scholar
  35. 35.
    Garrett, T.A., Schmeitzel, J.L., Klein, J.A., Hwang, J.J., and Schwarz, J.A., PLoS One, 2013, vol. 8, e57975.Google Scholar
  36. 36.
    Imbs, A.B., Russ. J. Mar. Biol., 2017, vol. 43, pp. 239–244.CrossRefGoogle Scholar
  37. 37.
    Folch, J., Lees, M., and Sloane, Stanley G.H., J. Biol. Chem., 1957, vol. 226, pp. 497–509.Google Scholar
  38. 38.
    Bramanti, L., Tsounis, G., Chocarro, B., Martínez-Quitana, A., Ambroso, S., Madurell, T., and Rossi, S., Coral Reefs, 2016, vol. 35, pp. 1033–1045.CrossRefGoogle Scholar
  39. 39.
    Urbanová, K., Vrkoslav, V., Valterová, I., Háková, M., and Cvacka, J., J. Lipid Res., 2011, vol. 53, pp. 204–213.CrossRefGoogle Scholar
  40. 40.
    Byrdwell, W.C., Lipids, 2005, vol. 40, pp. 383–417.CrossRefGoogle Scholar
  41. 41.
    Holcapek, M. and Byrdwell, W.C., Handbook of Advanced Chromatography/Mass Spectrometry Techniques, New York: Academic, 2017.Google Scholar
  42. 42.
    Hartvigsen, K., Ravandi, A., Bukhave, K., Holmer, G., and Kuksis, A., J. Mass Spectrom., 2001, vol. 36, pp. 1116–1124.CrossRefGoogle Scholar
  43. 43.
    Zhujin, L., Jianxiong, L., and Houming, W., Chinese J. Org. Chem., 1990, vol. 10, pp. 277–281.Google Scholar
  44. 44.
    Al Lihaibi, S.S., Al Sofyani, A., Niaz, G.R., Ahmad, V.U., Noorwala, M., and Mohammad, F.V., Scientia Marina, 2002, vol. 66, pp. 95–101.CrossRefGoogle Scholar
  45. 45.
    Chiereszko, L.S. and Karns, T.K.B., Biology and Geology of Coral Reefs, Jones, O.A., Ed., New York: Academic, 1973, vol. 2, pp. 183–203.CrossRefGoogle Scholar
  46. 46.
    Benson, A.A. and Muscatine, L., Limnol. Oceanogr., 1974, vol. 19, pp. 810–814.CrossRefGoogle Scholar
  47. 47.
    Bosh, T.V. and Long, F.K., Russ. J. Mar. Biol., 2017, vol. 43, pp. 436–443.CrossRefGoogle Scholar
  48. 48.
    Chen, H.-K., Song, S.-N., Wang, L.-H., Mayfield, A.B., Chen, Y.-J., Chen, W.-N.U., and Chen, C.-S., PLoS One, 2015, vol. 10, e0132519.Google Scholar
  49. 49.
    Chen, H.-K., Wang, L.-H., Chen, W.-N.U., Mayfield, A.B., Levy, O., Lin, C.-S., and Chen, C.-S., Sci. Rep., 2017, vol. 7, e3244.Google Scholar
  50. 50.
    Patton, J.S., Abraham, S., and Benson, A.A., Mar. Biol. (Berlin), 1977, vol. 44, pp. 235–247.CrossRefGoogle Scholar
  51. 51.
    Athenstaedt, K. and Daum, G., Eur. J. Biochem., 1999, vol. 266, pp. 1–16.CrossRefGoogle Scholar
  52. 52.
    Magnusson, C.D. and Haraldsson, G.G., Chem. Phys. Lipids, 2011, vol. 164, pp. 315–340.CrossRefGoogle Scholar
  53. 53.
    Imbs, A.B., Yakovleva, I.M., Dautova, T.N., Bui, L.H., and Jones, P., Phytochemistry, 2014, vol. 101, pp. 76–82.CrossRefGoogle Scholar
  54. 54.
    Vysotskii, M.V. and Svetashev, V.I., Biochim. Biophys. Acta, 1991, vol. 1083, pp. 161–165.CrossRefGoogle Scholar
  55. 55.
    Imbs A.B., Yakovleva I.M., Latyshev N.A., Pham, L.Q., Russ. J. Mar. Biol., 2010, vol. 36, pp. 452–457.CrossRefGoogle Scholar
  56. 56.
    Zhu, S., Ye, M., Xu, J., Guo, C., Zheng, H., Hu, J., Chen, J., Wang, Y., Xu, S., and Yan, X., J. Agric. Food Chem., 2015, vol. 63, p. 8283.CrossRefGoogle Scholar
  57. 57.
    Vaskovsky, V.E., Kostetsky, E.Y., and Vasendin, I.M., J. Chromatogr., 1974, vol. 114, pp. 129–141.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Scientific Center of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations