Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 44, Issue 2, pp 238–243 | Cite as

The Synthesis of (1,3,4-Oxadiazol-2-yl)Acrylic Acid Derivatives with Antibacterial and Protistocidal Activities

  • L. D. Popov
  • A. A. Zubenko
  • L. N. Fetisov
  • Yu. D. Drobin
  • A. I. Klimenko
  • A. N. Bodryakov
  • S. A. Borodkin
  • I. E. Melkozerova
Article
  • 31 Downloads

Abstract

A series of new 1,3,4-oxadiazol-2-yl-acrylic acids was synthesized by cyclization of 4-(2-R-hydrazino)- 4-oxo-2-butenic acids, and their antibacterial and protistocidal activities were studied. The p-substituted benzyl derivatives in the Z-form were shown to exhibit a high protistocidal activity, which exceeded that of the reference drug Baycox (toltrazuril) by several times, whereas the 3-hydroxy-2-naphthyl derivative, in addition to a very high protistocidal activity, also exhibited a moderate antibacterial activity.

Keywords

acrylic acid antibacterial activity 1,3,4-oxadiazol protistocidal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sova, M., Mini-Rev. Med. Chem., 2012, vol. 12, no. 8, pp. 749–767.CrossRefPubMedGoogle Scholar
  2. 2.
    Heleno, S.A., Ferreira, I.C.F.R., Esteves, A.P., Ciric, A., Glamoclija, J., Martins, A., Sokovic, M., and Queiroz, M.J.R.P., Food Chem. Toxicol., 2013, vol. 58, pp. 95–100.CrossRefPubMedGoogle Scholar
  3. 3.
    Hu, Y.-H., Chen, C.-M., Xu, L., Cui, Y., Yu, X.-Y., Gao, H.-J., Wang, Q., Liu, K., Shi, Y., and Chen, Q.-X., Postharvest Biol. Technol., 2015, vol. 104, pp. 33–41.CrossRefGoogle Scholar
  4. 4.
    Bisogno, F., Mascoti, L., Sanchez, C., Garibotto, F., Giannini, F., Kurina-Sanz, M., and Enriz, R., J. Agric. Food Chem., 2007, vol. 55, no. 26, pp. 10635–10640.CrossRefPubMedGoogle Scholar
  5. 5.
    Hoskins, J.A., J. Appl. Toxycol., 1984, vol. 4, no. 6, pp. 283–292.CrossRefGoogle Scholar
  6. 6.
    Li, L., Zhao, P., Hu, J., Liu, J., Liu, Y., Wang, Z., Xia, Y., Dai, Y., and Chen, L., Eur. J. Med. Chem., 2015, vol. 93, pp. 300–307.CrossRefPubMedGoogle Scholar
  7. 7.
    Liang, C., Pei, S., Ju, W., Jia, M., Tian, D., Tang, Y., and Mao, G., Eur. J. Med. Chem., 2017, vol. 133, pp. 319–328.CrossRefPubMedGoogle Scholar
  8. 8.
    De, P., Baltas, M., and Bedos-Belval, F., Curr. Med. Chem., 2011, vol. 18, no. 11, pp. 1672–1703.CrossRefPubMedGoogle Scholar
  9. 9.
    Yen, G.-C., Chen, Y.-L., Sun, F.-M., Chiang, Y.-L., Lu, S.-H., and Weng, C.-J., Eur. J. Pharmac. Sci., 2011, vol. 44, no. 3, pp. 281–287.CrossRefGoogle Scholar
  10. 10.
    Hu, Y.-H., Chen, Q.-X., Cui, Y., Gao, H.-J., Xu, L., Yu, X.-Y., Wang, Y., Yan, C-L., and Wang, Q., Int. J. Biol. Macromol., 2016, vol. 86, pp. 489–495.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang, H., Zhou, Q., Cao, J., and Wang, Y., Spectrochim. Acta, Part A, 2013, vol. 116, pp. 251–257.CrossRefGoogle Scholar
  12. 12.
    Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Nicolotti, O., and Carotti, A., Eur. J. Med. Chem., 2011, vol. 46, pp. 191–200.CrossRefPubMedGoogle Scholar
  13. 13.
    De Vita, D., Simonetti, G., Pandolfi, F., Costi, R., Di Santo, R., D’Auria, F.D., and Scipione, L., Bioorg. Med. Chem. Lett., 2016, vol. 26, no. 24, pp. 5931–5935.CrossRefPubMedGoogle Scholar
  14. 14.
    Thakkar, J.N., Tiwari, V., and Desai, U.R., Biomacromolecules, 2010, vol. 11, no. 5, pp. 1412–1416.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brozic, P., Golob, B., Gomboc, N., Rizner, T.L., and Gobec, S., Mol. Cell. Endocrinol., 2006, vol. 248, nos. 1–2, pp. 233–235.CrossRefPubMedGoogle Scholar
  16. 16.
    Adisakwattana, S., Sompong, W., Meeprom, A., Ngamukote, S., and Yibchok-anun, S., Int. J. Mol. Sci., 2012, vol. 13, no. 2, pp. 1778–1789.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Adisakwattana, S., Moonsan, P., and Yibchok-anun, S., J. Agric. Food Chem., 2008, vol. 56, no. 17, pp. 7838–7844.CrossRefPubMedGoogle Scholar
  18. 18.
    Prabhakar, P.K. and Doble, M., J. Agric. Food Chem., 2011, vol. 59, no. 18, pp. 9835–9844.CrossRefPubMedGoogle Scholar
  19. 19.
    Loetchutinat, C., Chau, F., and Mankhetkorn, S., Chem. Pharm. Bull., 2003, vol. 51, pp. 728–730.CrossRefPubMedGoogle Scholar
  20. 20.
    Bostrom, J., Hogner, A., Llinas, A., Wellner, E., and Plowright, A.T., J. Med. Chem., 2012, vol. 55, no. 5, pp. 1817–1830.CrossRefPubMedGoogle Scholar
  21. 21.
    Murty, M.S.R., Penthala, R., Buddana, S.K., Prakasham, R.S., Das, P., Polepalli, S., Jain, N., and Bojja, S., Med. Chem. Res., 2014, vol. 23, no. 10, pp. 4579–4594.CrossRefGoogle Scholar
  22. 22.
    Shi, W., Qian, X., Zhang, R., and Song, G., J. Agric. Food Chem., 2001, vol. 49, no. 1, pp. 124–130.CrossRefPubMedGoogle Scholar
  23. 23.
    Jha, K.K., Samad, A., Kumar, Ya., Shaharyar, M., Khosa, R.L., Jain, Ja., Kumar, V., and Singh, P., Eur. J. Med. Chem., 2010, vol. 45, no. 11, pp. 4963–4967.CrossRefPubMedGoogle Scholar
  24. 24.
    Rozhkov, S.S., Ovchinnikov, K.L., Krasovskaya, G.G., Danilova, A.S., and Kolobov, A.V., Zh. Org. Khim., 2015, vol. 51, no. 7, pp. 1000–1005.Google Scholar
  25. 25.
    Detert, H. and Schollmeier, D., Synthesis, 1999, vol. 51, no. 6, pp. 999–1004.CrossRefGoogle Scholar
  26. 26.
    Gutov, O.V., Cryst. Growth Des., 2013, vol. 13, no. 9, pp. 3953–3957.CrossRefGoogle Scholar
  27. 27.
    Le Berre, A., Godin, J., and Garreau, R., Acad. Sci. Ser. 3, vol. 265, p. 570.Google Scholar
  28. 28.
    Siegrist, A.E., Moergeli, E., and Hoelzle, K., US Patent no. 2765304, 1956.Google Scholar
  29. 29.
    Kokunov, Yu.V., Gorbunova, Yu.E., Popov, L.D., Kovalev, V.V., Razgonyaeva, G.A., Kozyukhin, S.A., and Borodkin, S.A., Koord. Khim., 2016, vol. 42, no. 6, pp. 323–328.CrossRefGoogle Scholar
  30. 30.
    Fetisov, L.N., Zubenko, A.A., Bodryakov, A.N., and Bodryakova, M.A., in Materialy mezhdunarodnogo parazitologicheskogo simpoziuma “Sovremennye problemy obshchei i chastnoi parazitologii” (Proc. Int. Parasitol. Symp. “Modern Problems of General and Special Parasitology”), 2012, pp. 70–73.Google Scholar
  31. 31.
    Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veschestv (A Guide to Experimental (Preclinical) Study of New Pharmaceuticals), Khabriev, R.U., Ed., Moscow: Meditsina, 2005.Google Scholar
  32. 32.
    Rukovodstvo po provedeniyu doklinicheskikh issledovany lekarstvennykh sredstv (A Guide to Preclinical Drug Research), Mironov, A.N., Ed., Moscow: Grif i K, 2012, part 1.Google Scholar
  33. 33.
    Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam. Metodicheskie ukazaniya. MUK 4.2.1890-04 (Determination of the Sensitivity of Microorganisms to Antibacterial Drugs. Methodical Instructions. MUK 4.2.1890-04), Moscow: Meditsina, 2004.Google Scholar
  34. 34.
    Pershin, G.N., Metody eksperimental’noy khimioterapii (Methods of Experimental Chemotherapy), Moscow: Meditsina, 1971, pp. 100–106.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. D. Popov
    • 1
  • A. A. Zubenko
    • 2
  • L. N. Fetisov
    • 2
  • Yu. D. Drobin
    • 2
  • A. I. Klimenko
    • 3
  • A. N. Bodryakov
    • 2
  • S. A. Borodkin
    • 1
  • I. E. Melkozerova
    • 4
  1. 1.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.North-Caucasian Zonal Scientific Research Veterinary InstituteNovocherkasskRussia
  3. 3.Don State Agrarian UniversityPersianovskiiRussia
  4. 4.Rostov-on-Don Basic Medical CollegeRostov-on-DonRussia

Personalised recommendations