Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 42, Issue 5, pp 532–545 | Cite as

Chitosan nanoparticles targeted to the tumor-associated ganglioside GD2

  • A. A. Zubareva
  • A. A. Boyko
  • I. V. Kholodenko
  • F. N. Rozov
  • M. V. Larina
  • T. K. Aliev
  • I. I. Doronin
  • P. A. Vishnyakova
  • I. M. Molotkovskaya
  • R. V. Kholodenko
Article

Abstract

Methodological approaches to the creation of nanoparticles based on chitosan derivatives and targeted to the GD2-positive tumor cells were developed. The GD2-specific monoclonal antibodies and their Fab-fragments and scFv-fragments were obtained and studied as vector molecules. Various methods for covalent conjugation of these molecules to the nanoparticles were also studied. It was shown that site-specific conjugation of scFv-fragments of GD2-specific antibodies to the chitosan nanoparticles by using a reagent BMPS is the optimal approach to create targeted chitosan-based nanoparticles directed to tumor-associated ganglioside GD2.

Keywords

ganglioside GD2 tumor-associated gangliosides targeted nanoparticles cell death monoclonal antibodies Fab-fragments scFv-fragments 

Abbreviations

anti-GD2-mAbs

GD2-specific monoclonal antibodies

BMPS

N-(β-maleimidopropionyl)succinimide

CDI-method

the carbodiimide method

EDC-1

ethyl-3-(3-dimethylaminopropyl)carbodiimide

IPTG

isopropyl-β-D-1- thiogalactopyranoside

Fab

the antigen-binding fragment of an antibody

FBS

fetal bovine serum

FITC

fluorescein-5-isothiocyanate

HRP

horseradish peroxidase

miR

small noncoding RNA molecules

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NHS

N-hydroxysuccinimide

PBS

phosphate buffered saline

PI

propidium iodide

scFv

single-chain variable fragments of antibodies

siRNA

small interfering RNA

TCEP

tris(2-carboxyethyl)phosphine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Navid, F., Santana, V.M., and Barfield, R.C., Curr. Cancer Drug Targets, 2010, vol. 10, pp. 200–209.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Suzuki, M. and Cheung, N.K., Expert Opin. Ther. Targets, 2015, vol. 19, no. 3, pp. 349–362.CrossRefPubMedGoogle Scholar
  3. 3.
    Battula, V.L., Shi, Y., Evans, K.W., Wang, R.Y., Spaeth, E.L., Jacamo, R.O., Guerra, R., Sahin, A.A., Marini, F.C., Hortobagyi, G., Mani, S.A., and Andreeff, M., J. Clin. Invest., 2012, vol. 122, pp. 2066–2078.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Doronin, I.I., Vishnyakova, P.A., Kholodenko, I.V., Molotkovskaya, I.M., Ponomarev, E.D., and Kholodenko, R.V., BMC Cancer, 2014, vol. 14, p. 295.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Deyev, S.M., Lebedenko, E.N., Petrovskaya, L.E., Dolgikh, D.A., Gabibov, A.G., and Kirpichnikov, M.P., Russ. Chem. Rev., 2015, vol. 84, pp. 1–26.CrossRefGoogle Scholar
  6. 6.
    Brown, B.S., Patanam, T., Mobli, K., Celia, C., Zage, P.E., Bean, A.J., and Tasciotti, E., Cancer Biol. Ther., 2014, vol. 15, pp. 851–861.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Di Paolo, D., Ambrogio, C., Pastorino, F., Brignole, C., Martinengo, C., Carosio, R., Loi, M., Pagnan, G., Emionite, L., Cilli, M., et al., Mol. Ther., 2011, vol. 19, pp. 2201–2012.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vodovozova, E.L., Nazarova, A.I., Feofanov, A.V., Kholodenko, R.V., Pazynina, G.V., Gaenko, G.P., Bovin, N.V., and Molotkovski., Yu.G., Biol. Membr., 2004, vol. 21, pp. 53–64.Google Scholar
  9. 9.
    Baiu, D.C., Artz, N.S., McElreath, M.R., Menapace, B.D., Hernando, D., Reeder, S.B., Gruttner, C., and Otto, M., Nanomedicine (Lond.), 2015, vol. 10, pp. 2973–2988.CrossRefGoogle Scholar
  10. 10.
    Tivnan, A., Orr, W.S., Gubala, V., Nooney, R., Williams, D.E., McDonagh, C., Prenter, S., Harvey, H., Domingo-Fernandez, R., Bray, I.M., Piskareva, O., Ng, C.Y., Lode, H.N., Davidoff, A.M., and Stallings, R.L., PLoS One, 2012, vol. 7, p. e38129.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Prabaharan, M., Int. J. Biol. Macromol., 2015, vol. 72, pp. 1313–1322.CrossRefPubMedGoogle Scholar
  12. 12.
    Zubareva, A.A., Shcherbinina, T.S., Varlamov, V.P., and Svirshchevskaya, E.V., Nanoscale, 2015, vol. 7, pp. 7942–7952.CrossRefPubMedGoogle Scholar
  13. 13.
    Doronin, I.I., Kholodenko, I.V., Molotkovskaya, I.M., and Kholodenko, R.V., Bull. Exp. Biol. Med., 2013, vol. 154, pp. 658–663.CrossRefPubMedGoogle Scholar
  14. 14.
    Cheung, N.K., Guo, H., Hu, J., Tassev, D.V., and Cheung, I.Y., Oncoimmunology, 2012, vol. 1, pp. 477–486.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lei, S.P., J. Bacteriol., 1987, vol. 169, pp. 4379–4383.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Il’ina, A.V., Rybprom, 2010, vol. 2, pp. 70–75.Google Scholar
  17. 17.
    Woof, J. and Burton, D., Nat. Rev. Immunol., 2004, vol. 4, pp. 89–99.CrossRefPubMedGoogle Scholar
  18. 18.
    Kowalczyk, A., Gil, M., Horwacik, I., Odrowaz, Z., Kozbor, D., and Rokita, H., Cancer Lett., 2009, vol. 281, pp. 171–182.CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshida, S., Kawaguchi, H., Sato, S., Ueda, R., and Furukawa, K., Japan J. Cancer Res., 2002, vol. 93, pp. 816–824.CrossRefGoogle Scholar
  20. 20.
    Tsao, C.Y., Sabbatino, F., Cheung, N.V., Hsu, J.C., Villani, V., Wang, X., and Ferrone, S., Oncoimmunology, 2015, vol. 4, p. e1023975.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kholodenko, I.V., Doronin, I.I., Vishnyakova, P.A., Bolkhovitina, E.L., Molotkovskaya, I.M., and Kholodenko, R.V., Immunologiya, 2013, vol. 4, pp. 199–203.Google Scholar
  22. 22.
    Vishnyakova, P.A., Doronin, I.I., Kholodenko, I.V., Ryazantsev, D.Yu., Molotkovskaya, I.M., and Kholodenko, R.V., Russ. J. Bioorg. Chem., 2014, vol. 40, pp. 279–287.CrossRefGoogle Scholar
  23. 23.
    De Maria, R., Lenti, L., Malisan, F., d’Agostino, F., Tomassini, B., Zeuner, A., Rippo, M.R., and Testi, R., Science, 1997, vol. 12, pp. 1652–1655.CrossRefGoogle Scholar
  24. 24.
    Molotkovskaya, I.M., Kholodenko, R.V., Zelenova, N.A., Sapozhnikov, A.M., Mikhalev, I.I., and Molotkovsk., Jul.G., Membr. Cell Biol., 2000, vol. 13, pp. 811–822.PubMedGoogle Scholar
  25. 25.
    Kholodenko, R.V., Sapozhnikov, A.M., Mikhalev, I.I., Molotkovsk., Yul.G., and Molotkovskaya, I.M., Biol. Membr., 2002, vol. 19, pp. 209–215.Google Scholar
  26. 26.
    Zubareva, A., Ily’ina, A., Prokhorov, A., Kurek, D., Efremov, M., and Varlamov, V., Molecules, 2013, vol. 18, pp. 7848–7864.CrossRefPubMedGoogle Scholar
  27. 27.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  28. 28.
    Denizot, F. and Lang, R., J. Immunol. Methods, 1986, vol. 89, pp. 271–277.CrossRefPubMedGoogle Scholar
  29. 29.
    Telford, W.G., King, L.E., and Fraker, P.J., J. Immunol. Methods, 1994, vol. 172, pp. 1–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Kholodenko, I.V., Buzdin, A.A., Kholodenko, R.V., Baibikova, J.A., Sverdlov, E.D., Sorokin, V.F., and Yarygin, V.N., Biochemistry (Moscow), 2006, vol. 71, pp. 767–774.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Zubareva
    • 1
    • 2
  • A. A. Boyko
    • 1
  • I. V. Kholodenko
    • 1
    • 3
  • F. N. Rozov
    • 4
  • M. V. Larina
    • 1
  • T. K. Aliev
    • 5
  • I. I. Doronin
    • 1
  • P. A. Vishnyakova
    • 1
  • I. M. Molotkovskaya
    • 1
  • R. V. Kholodenko
    • 1
    • 6
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  3. 3.Orekhovich Institute of Biomedical ChemistryMoscowRussia
  4. 4.Belozersky Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia
  5. 5.Department of ChemistryMoscow State UniversityMoscowRussia
  6. 6.Real Target LLCMoscowRussia

Personalised recommendations