Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 40, Issue 7, pp 726–732 | Cite as

Enzymatic hydrolysis of cellulose from oat husks at different substrate concentrations

  • E. I. Makarova
  • V. V. Budaeva
  • E. A. Skiba
Plant Biopolymers

Abstract

Pulps prepared from oat husks via a method combining prehydrolysis, alkali delignification, and nitric acid treatment were demonstrated to possess high fermentability upon hydrolysis using multienzyme preparations, such as BrewZyme BGX and CelloLux-A. A dependence of the increment of the yield of reducing substances on the initial substrate concentration ranging from 15 to 120 g/dm3 was studied. The final yield of reducers at 72 h was shown to decline from 88 to 65% with an increase in the initial concentration of the substrate.

Keywords

pulp oat husk alkali delignification followed by nitric acid treatment enzymatic hydrolysis reducers BrewZyme BGX CelloLux-A substrate concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borisenkov, M.V., Shubakov, A.A., Kocheva, L.S., and Karmanov, A.P., Khim. Rastit. Syr’ya, 2011, no. 4, pp. 19–23.Google Scholar
  2. 2.
    Torlopov, M.A., Tarabukin, D.V., Frolova, S.V., Shcherbakova, T.P., and Volodin, V.V., Khim. Rastit. Syr’ya, 2007, no. 3, pp. 69–76.Google Scholar
  3. 3.
    Lloyd, T.A. and Wyman, C.E., Bioresource Technol., 2005, vol. 96, pp. 1967–1977.CrossRefGoogle Scholar
  4. 4.
    Sinitsyn, A.P., Gusakov, A.V., and Chernoglazov, V.M., Biokonversiya lignotsellyuloznykh materialov (Bioconversion of Lignocellulosic Materials), Moscow, 1995.Google Scholar
  5. 5.
    Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., and Osborne, J., Bioresource Technol., 2007, vol. 98, pp. 3000–3011.CrossRefGoogle Scholar
  6. 6.
    Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., and Fukuda, K., Biosci. Biotechnol. Biochem., 2008, vol. 72, pp. 805–810.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, Z., Jameel, H., Chang, H.-M., Philips, R., and Park, S., Biotechnol. Bioeng., 2012, vol. 5, pp. 1449–1463.Google Scholar
  8. 8.
    Taherzaden, M.J. and Karimi, K., BioResources, 2007, vol. 2, no. 4, pp. 707–738.Google Scholar
  9. 9.
    Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Work on the Chemistry of Wood and Cellulose), Moscow, 1991.Google Scholar
  10. 10.
    GOST 25438-82. Tsellyuloza dlya khimicheskoi pererabotki. Metody opredeleniya kharakteristicheskoi vyazkosti (GOST 25438-82 10. Cellulose for Chemical Processing: Methods of Determination of Intrinsic Viscosity), Moscow, 1982.Google Scholar
  11. 11.
    Aleshina, L.A., Lyukhanova, I.V., Budaeva, V.V., Zolotukhin, V.N., Mitrofanov, R.Yu., and Sakovich, G.V., Uchen. Zapiski Petrozavod. Gos. Univ., 2011, no. 8, pp. 114–117.Google Scholar
  12. 12.
    Gerasimenko, V.L., Laboratornye metody opredeleniya glyukozy: metod. rekomendatsii (Laboratory Methods for Glucose Determination: Guidelines), Izhevsk, 2002.Google Scholar
  13. 13.
    Veshnyakov, V.A., Khabarov, Yu.G., and Kamakina, N.D., Khim. Rastit. Syr’ya, 2008, no. 4, pp. 47–50.Google Scholar
  14. 14.
    Makarova, E.I. and Budaeva, V.V., in Tekhnologiya I oborudovanie khimicheskoi, biotekhnologicheskoi i pishchevoi promyshlennosti: mat. 3-i Vseros. nauch.-prakt. konf. studentov, aspirantov i molodykh uchenykh s mezhdunar. uchastiem (Technology and Equipment for Chemical, Biotechnological, and Food Industry: Proc. 3rd All-Russia Scientific and Practical Conference for Students, Graduate Students, and Young Scientists with International Participation.), Biisk, 2010, Part 1, pp. 215–218.Google Scholar
  15. 15.
    Zolotukhin, V.N. and Budaeva, V.V., in Novye dostizheniya v khimii i khimicheskoi tekhnologii rastitel’nogo syr’ya: mat. V Vseros. konf. (New Advances in Chemistry and Chemical Technology of Plant Raw Materials: Proc. V All-Russia Conference), Barnaul, 2012, pp. 75–77.Google Scholar
  16. 16.
    Nepenin, N.N., Tekhnologiya tsellyulozy (Cellulose Technology), vol. 1: Proizvodstvo sul’fitnoi tsellyulozy (Production of Sulphite Pulp), Moscow, 1976.Google Scholar
  17. 17.
    Makarova, E.I., Budaeva, V.V., and Mitrofanov, R.Yu., Polzunovskii Vestnik, 2010, no. 4, pp. 192–198.Google Scholar
  18. 18.
    Novyi spravochnik khimika i tekhnologa. Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv (A New Handbook of Chemist and Technologist: Raw Materials and Products of Organic and Inorganic Substance Industry), St. Petersburg, 2006.Google Scholar
  19. 19.
    Felbyu, K., Larsen, Ya., Jorgensen, H., and Vibe-Pedersen, J., EA Patent No. 014759, 2008.Google Scholar
  20. 20.
    Makarova, E.I., Khim. Interesah Ustoich. Razvit., 2013, vol. 21, no. 2, pp. 219–225.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute for Problems of Chemical and Energetic Technologies, Siberian BranchRussian Academy of SciencesBiiskRussia

Personalised recommendations