Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 40, Issue 4, pp 401–409 | Cite as

Recombinant fluorescent models for studying the diphtheria toxin

  • A. J. Labyntsev
  • N. V. Korotkevych
  • K. J. Manoilov
  • A. A. Kaberniuk
  • D. V. Kolybo
  • S. V. Komisarenko
Article

Abstract

Diphtheria toxin is a major factor of the pathogenicity of the causative agent of diphtheria Corynebacterium. Due to a small size, it is of considerable interest as the basis for the development of synthetic protein molecules with a transport function, e.g., immunotoxins. In this work we describe the expression and characterized nontoxic recombinant fluorescent derivatives of the diphtheria toxin and its nontoxic CRM197 mutant. The proteins obtained can be used for studying receptor-binding and transport functions of the toxin in cells, evaluation of the expression level of the toxin proHB-EGF receptor membranes, immunization and generation of specific antibodies against the toxin, as well as for the development of diagnostic test-systems for the diphtheria toxin and antitoxic antibodies.

Keywords

fluorescent proteins molecular cloning proHB-EGF recombinant nontoxic bacterial toxin analogues 

Abbreviations

DT

diphtheria toxin

BSA

bovine serum albumin

DABCO

1,4-diazobicyclooctane

IPTG

isopropyl-β-D-1-thiogalactopyranoside

LD

a lethal dose

PBS

phosphate buffered saline

proHB-EGF

precursor of the heparin-binding epidermal growth factor-like growth factor

PVA

polyvinyl alcohol

Rd

a diphtheria toxin R domain

SbA and SbB

diphtheria toxin A and B subunits

SOE-PCR

splicing with overlap extension PCR

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freeman, V.J. and Morse, I.U., J. Bacteriol., 1952, vol. 63, no. 3, pp. 407–414.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Collier, R.J., Bacteriol. Rev., 1975, vol. 39, no. 1, pp. 54–85.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Choe, S., Bennett, M.J., Fujii, G., Curmi, P.M., Kantardjieff, K.A., Collier, R.J., and Eisenberg, D., Nature, 1992, vol. 357, no. 6375, pp. 216–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett, M.J., Choe, S., and Eisenberg, D., Protein Sci. Publ. Protein Soc., 1994, vol. 3, no. 9, pp. 1444–1463.CrossRefGoogle Scholar
  5. 5.
    Naglich, J.G., Metherall, J.E., Russell, D.W., and Eidels, L., Cell, 1992, vol. 69, no. 6, pp. 1051–1061.PubMedCrossRefGoogle Scholar
  6. 6.
    Louie, G.V., Yang, W., Bowman, M.E., and Choe, S., Mol. Cell, 1997, vol. 1, no. 1, pp. 67–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Collier, R.J., Toxicon Off. J. Int. Soc. Toxicol., 2001, vol. 39, no. 11, pp. 1793–1803.CrossRefGoogle Scholar
  8. 8.
    Chenal, A., Prongidi-Fix, L., Perier, A., et al., J. Mol. Biol., 2009, vol. 391, no. 5, pp. 872–883.PubMedCrossRefGoogle Scholar
  9. 9.
    Romaniuk, S.I., Kolibo, D.V., and Komisarenko, S.V., Russ. J. Bioorg. Chem., 2012, vol. 38, no. 6, pp. 639–652.CrossRefGoogle Scholar
  10. 10.
    Gill, D.M., Microbiol. Rev., 1982, vol. 46, no. 1, pp. 86–94.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Sims, N.R.A., The Evolution of Biological Disarmament, Oxford University Press, 2001.Google Scholar
  12. 12.
    Ratts, R., Trujillo, C., Bharti, A., Vanderspek, J., Harrison, R., and Murphy, J.R., Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 43, pp. 15635–15640.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Trujillo, C., Taylor-Parker, J., Harrison, R., and Murphy, J.R., Mol. Microbiol., 2010, vol. 76, no. 4, pp. 1010–1019.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaberniuk, A.A., Labyntsev, A.J., Kolibo, D.V., Oliinyk, O.S., Redchuk, T.A., Korotkevych, N.V., Gorchev, V.F., Karakhim, S.A., and Komisarenko, S.V., Ukr. Biokhim. Zh., 2009, vol. 81, no. 1, pp. 67–77.PubMedGoogle Scholar
  15. 15.
    Uchida, T., Pappenheimer, A.M.Jr., and Greany, R., J. Biol. Chem., 1973, vol. 248, no. 11, pp. 3838–3844.PubMedGoogle Scholar
  16. 16.
    Johnson, D.E., Ai, H.-W., Wong, P., Young, J.D., Campbell, R.E., and Casey, J.R., J. Biol. Chem., 2009, vol. 284, no. 31, pp. 20499–20511.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Johnson, D.E. and Casey, J.R., J. Physiol., 2011, vol. 589, no. 7, pp. 1551–1569.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Higuchi, R., Krummel, B., and Saiki, R.K., Nucleic Acids Res., 1988, vol. 16, no. 15, pp. 7351–7367.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Middlebrook, J.L., Dorland, R.B., and Leppla, S.H., J. Biol. Chem., 1978, vol. 253, no. 20, pp. 7325–7330.PubMedGoogle Scholar
  20. 20.
    Miyazono, K., J. Biochem. (Tokyo), 2012, vol. 151, no. 1, pp. 1–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Shimura, T., Yoshida, M., Fukuda, S., et al., BMC Cancer, 2012, vol. 12, no. 1, p. 205.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sato, S., Kamada, H., Watanabe, T., Tsuji, I., and Fan, J., PloS One, 2013, vol. 8, no. 1, p. e54509.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Schagger, H. and von Jagow, G., Anal. Biochem., 1987, vol. 166, no. 2, pp. 368–379.PubMedCrossRefGoogle Scholar
  24. 24.
    Van de Loosdrecht, A.A., Beelen, R.H.J., Ossenkoppele, G.J., Broekhoven, M.G., and Langenhuijsen, M.M.A.C., J. Immunol. Methods, 1994, vol. 174, nos. 1–2, pp. 311–320.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. J. Labyntsev
    • 1
  • N. V. Korotkevych
    • 1
  • K. J. Manoilov
    • 1
  • A. A. Kaberniuk
    • 2
  • D. V. Kolybo
    • 1
  • S. V. Komisarenko
    • 1
  1. 1.A.V. Palladin Institute of Biochemistry of the National Academy of Sciences of UkraineKyivUkraine
  2. 2.Albert Einstein College of Yeshiva UniversityBronxUSA

Personalised recommendations