Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 39, Issue 4, pp 341–355 | Cite as

Compartmentalization of ROS-mediated signal transduction

  • V. V. Belousov
  • G. N. Enikolopov
  • N. M. MishinaEmail author
Review Article

Abstract

Localization of signaling molecules close to their targets is the central principle of cell signaling. The colocalization of multicomponent signaling complexes is realized through protein scaffolds that provide better specificity than undirected diffusion of the same components. It has been suggested that ROS-generating complexes follow the principle by specific intracellular localization of ROS production and the limitation of ROS diffusion distances. However, the lack of adequate methods did not allow direct detection of local ROS production to confirm the model of redox signaling compartmentalization. Nevertheless, evidence of local ROS production and the restriction of diffusion were provided by kinetic modeling and data on the subcellular localization of NADPH oxidase isoforms, their adapter proteins, and local restriction of ROS diffusion. Here we shall discuss the properties of antioxidant systems which prevent uncontrolled ROS diffusion from sites of generation to the adjacent subcellular compartments; the current data on the specific localization of NADPH oxidase activity and its influence on intracellular processes; and the recent evidence of the ROS diffusion restriction.

Keywords

reactive oxygen species hydrogen peroxide compartmentalization NADPH oxidase signal transduction HyPer 

Abbreviations

AT1R

angiotensin receptor type 1

Cav1

caveolin-1

EGF

epidermal growth factor

FRET

Fönster resonance energy transfer

GSH/GSSG

glutathione/glutathione disulfide

IL-1β

interleukin 1β

IL-1R1

interleukin 1 receptor type 1

IKK

IκB kinase

IKKK

IKK kinase

MAPK or MAP-kinase

mitogen-activated protein kinase

MyD88

myeloid differentiation primary response gene (88)

NADPH

nicotinamide adenine dinucleotide phosphate

NF-κB

nuclear factor kappa-lightchain-enhancer of activated B cells

Nox

NADPH oxidase

OxyR-RD

regulatory domain of the OxyR transcription factor

PDFG

platelet-derived growth factor

PIP3

phosphatidylinositol-3,4,5-triphosphate

PI-3K

phosphatidylinositol-3-kinase

Prx

peroxiredoxin

PTEN

phosphatase and tensin homologue

PTP-1B

protein tyrosine phosphatase 1B

Rac

Ras-related C3 botulinum toxin substrate

RTK

receptor tyrosine kinase

Src

cell homologue of the Rous sarcoma virus v-Src oncogene

TNFα

tumor necrosis factor alpha

TRAF

TNF receptor-associated factor

Trx(SH)2/TrxSS

thioredoxin reduced/oxidized

YFP

yellow fluorescent protein

cpYFP

circularly permuted YFP

ROS

reactive oxygen species

SMC

smooth muscle cells

PM

plasma membrane

EC

endothelial cells

ER

endoplasmic reticulum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Men’shikova, E.B., Lankin, V.Z., Zenkov, N.K., Bondar’, I.A., Krugovykh, N.F., and Trufakin, V.A., Okislitel’nyi stress. Prooksidanty i antioksidanty (Oxidative Stress: Prooxidants and Antioxidants), Moscow: Slovo, 2006.Google Scholar
  2. 2.
    Winterbourn, C.C. and Metodiewa, D., Methods Enzymol., 1995, vol. 251, pp. 81–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Forman, H.J. and Fridovich, I., Arch. Biochem. Biophys., 1973, vol. 158, pp. 396–400.PubMedCrossRefGoogle Scholar
  4. 4.
    Hidalgo, E., Bollinger, J.M., Bradley, T.M., Walsh, C.T., and Demple, B., J. Biol. Chem., 1995, vol. 270, pp. 20908–20914.PubMedCrossRefGoogle Scholar
  5. 5.
    Fujikawa, M., Kobayashi, K., and Kozawa, T., J. Biol. Chem., 2012, vol. 287, pp. 35702–35708.PubMedCrossRefGoogle Scholar
  6. 6.
    Hidalgo, E. and Demple, B., EMBO J., 1994, vol. 13, pp. 138–146.PubMedGoogle Scholar
  7. 7.
    Gardner, P.R. and Fridovich, I., J. Biol. Chem., 1992, vol. 267, pp. 8757–8763.PubMedGoogle Scholar
  8. 8.
    Gardner, P.R., Raineri, I., Epstein, L.B., and White, C.W., J. Biol. Chem., 1995, vol. 270, pp. 13399–13405.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson, C.P., Shen, M., Eisenstein, R.S., and Leibold, E.A., Biochim. Biophys. Acta, 2012, vol. 1823, pp. 1468–1483.PubMedCrossRefGoogle Scholar
  10. 10.
    Bedard, K. and Krause, K.-H., Physiol. Rev., 2007, vol. 87, pp. 245–313.PubMedCrossRefGoogle Scholar
  11. 11.
    Veal, E.A., Day, A.M., and Morgan, B.A., Mol. Cell, 2007, vol. 26, pp. 1–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Mumbengegwi, D.R., Li, Q., Li, C., Bear, C.E., and Engelhardt, J.F., Mol. Cell. Biol., 2008, vol. 28, pp. 3700–3712.PubMedCrossRefGoogle Scholar
  13. 13.
    Bienert, G.P., Moller, A.L.B., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K., and Jahn, T.P., J. Biol. Chem., 2007, vol. 282, pp. 1183–1192.PubMedCrossRefGoogle Scholar
  14. 14.
    Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.-C., Hinks, J.A., Tonks, N.K., and Barford, D., Nature, 2003, vol. 423, pp. 769–773.PubMedCrossRefGoogle Scholar
  15. 15.
    Storz, G., Tartaglia, L.A., and Ames, B.N., Science, 1990, vol. 248, pp. 189–194.PubMedCrossRefGoogle Scholar
  16. 16.
    Wood, Z.A., Poole, L.B., and Karplus, P.A., Science, 2003, vol. 300, pp. 650–653.PubMedCrossRefGoogle Scholar
  17. 17.
    Stone, J.R., Arch. Biochem. Biophys., 2004, vol. 422, pp. 119–124.PubMedCrossRefGoogle Scholar
  18. 18.
    Aslund, F., Zheng, M., Beckwith, J., and Storz, G., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 6161–6165.PubMedCrossRefGoogle Scholar
  19. 19.
    Poole, L.B., Karplus, P.A., and Claiborne, A., Annu. Rev. Pharmacol. Toxicol., 2004, vol. 44, pp. 325–347.PubMedCrossRefGoogle Scholar
  20. 20.
    Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.-S., Kang, S.W., Kim, K., and Rhee, S.G., Science, 2003, vol. 300, pp. 653–656.PubMedCrossRefGoogle Scholar
  21. 21.
    Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., and Chumakov, P.M., Science, 2004, vol. 304, pp. 596–600.PubMedCrossRefGoogle Scholar
  22. 22.
    Ghezzi, P., Biochem. Soc. Trans., 2005, vol. 33, pp. 1378–1381.PubMedCrossRefGoogle Scholar
  23. 23.
    Schafer, F.Q. and Buettner, G.R., Free Radic. Biol. Med., 2001, vol. 30, pp. 1191–1212.PubMedCrossRefGoogle Scholar
  24. 24.
    Ziegler, D.M., Ann. Rev. Biochem., 1985, vol. 54, pp. 305–329.PubMedCrossRefGoogle Scholar
  25. 25.
    Gravina, S.A. and Mieyal, J.J., Biochemistry, 1993, vol. 32, pp. 3368–3376.PubMedCrossRefGoogle Scholar
  26. 26.
    Chance, B., Sies, H., and Boveris, A., Physiol. Rev., 1979, vol. 59, pp. 527–605.PubMedGoogle Scholar
  27. 27.
    Wagner, E., Luche, S., Penna, L., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E., and Rabilloud, T., Biochem. J., 2002, vol. 366, pp. 777–785.PubMedGoogle Scholar
  28. 28.
    Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.-S., Yang, K.-S., and Woo, H.A., Curr. Opin. Cell. Biol., 2005, vol. 17, pp. 183–189.PubMedCrossRefGoogle Scholar
  29. 29.
    Denu, J.M. and Tanner, K.G., Biochemistry, 1998, vol. 37, pp. 5633–5642.PubMedCrossRefGoogle Scholar
  30. 30.
    Sohn, J. and Rudolph, J., Biochemistry, 2003, vol. 42, pp. 10060–10070.PubMedCrossRefGoogle Scholar
  31. 31.
    Winterbourn, C.C. and Metodiewa, D., Free Radic. Biol. Med., 1999, vol. 27, pp. 322–328.PubMedCrossRefGoogle Scholar
  32. 32.
    Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C., J. Biol. Chem., 2007, vol. 282, pp. 11885–11892.PubMedCrossRefGoogle Scholar
  33. 33.
    Rhee, S.G., Science, 2006, vol. 312, pp. 1882–1883.PubMedCrossRefGoogle Scholar
  34. 34.
    Biteau, B., Labarre, J., and Toledano, M.B., Nature, 2003, vol. 425, pp. 980–984.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang, T.-S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., and Rhee, S.G., J. Biol. Chem., 2004, vol. 279, pp. 50994–51001.PubMedCrossRefGoogle Scholar
  36. 36.
    Ushio-Fukai, M., Sci. STKE, 2006, vol. 2006, p. 8.Google Scholar
  37. 37.
    Park, H.S., Lee, S.H., Park, D., Lee, J.S., Ryu, S.H., Lee, W.J., Rhee, S.G., and Bae, Y.S., Mol. Cell. Biol., 2004, vol. 24, pp. 4384–4394.PubMedCrossRefGoogle Scholar
  38. 38.
    Ikeda, S., Yamaoka-Tojo, M., Hilenski, L., Patrushev, N.A., Anwar, G.M., Quinn, M.T., and Ushio-Fukai, M., Arterioscler. Thromb. Vasc. Biol., 2005, vol. 25, pp. 2295–2300.PubMedCrossRefGoogle Scholar
  39. 39.
    Wu, R.F., Xu, Y.C., Ma, Z., Nwariaku, F.E., Sarosi, G.A., and Terada, L.S., J. Cell Biol., 2005, vol. 171, pp. 893–904.PubMedCrossRefGoogle Scholar
  40. 40.
    Kwon, J., Lee, S.-R., Yang, K.-S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 16419–16424.PubMedCrossRefGoogle Scholar
  41. 41.
    Funamoto, S., Meili, R., Lee, S., Parry, L., and Firtel, R.A., Cell, 2002, vol. 109, pp. 611–623.PubMedCrossRefGoogle Scholar
  42. 42.
    Leslie, N.R., Yang, X., Downes, C.P., and Weijer, C.J., Biochem. Soc. Trans., 2005, vol. 33, pp. 1507–1508.PubMedCrossRefGoogle Scholar
  43. 43.
    Van Buul, J.D., Fernandez-Borja, M., Anthony, E.C., and Hordijk, P.L., Antioxid. Redox. Signal, 2005, vol. 7, pp. 308–317.PubMedCrossRefGoogle Scholar
  44. 44.
    Huang, C., Rajfur, Z., Borchers, C., Schaller, M.D., and Jacobson, K., Nature, 2003, vol. 424, pp. 219–223.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu, R.F., Gu, Y., Xu, Y.C., Nwariaku, F.E., and Terada, L.S., J. Biol. Chem., 2003, vol. 278, pp. 36830–36840.PubMedCrossRefGoogle Scholar
  46. 46.
    Harder, T. and Simons, K., Curr. Opin. Cell. Biol., 1997, vol. 9, pp. 534–542.PubMedCrossRefGoogle Scholar
  47. 47.
    Simons, K. and Toomre, D., Nat. Rev. Mol. Cell. Biol., 2000, vol. 1, pp. 31–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Vilhardt, F. and Van Deurs, B., EMBO J., 2004, vol. 23, pp. 739–748.PubMedCrossRefGoogle Scholar
  49. 49.
    Zuo, L., Ushio-Fukai, M., Ikeda, S., Hilenski, L., Patrushev, N., and Alexander, R.W., Arterioscler. Thromb. Vasc. Biol., 2005, vol. 25, pp. 1824–1830.PubMedCrossRefGoogle Scholar
  50. 50.
    Navarro, A., Anand-Apte, B., and Parat, M.-O., FASEB J., 2004, vol. 18, pp. 1801–1811.PubMedCrossRefGoogle Scholar
  51. 51.
    Gómez-Moutón, C., Lacalle, R.A., Mira, E., Jiménez-Baranda, S., Barber, D.F., Carrera, A.C., Martínez, A.C., and Mañes, S., J. Cell Biol., 2004, vol. 164, pp. 759–768.PubMedCrossRefGoogle Scholar
  52. 52.
    Mañes, S. and Martínez, A. C., Trends. Cell. Biol., 2004, vol. 14, pp. 275–278.PubMedCrossRefGoogle Scholar
  53. 53.
    Del Pozo, M.A., Alderson, N.B., Kiosses, W.B., Chiang, H.-H., Anderson, R.G.W., and Schwartz, M.A., Science, 2004, vol. 303, pp. 839–842.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang, A.Y., Yi, F., Zhang, G., Gulbins, E., and Li, P.-L., Hypertension, 2006, vol. 47, pp. 74–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Hilenski, L.L., Clempus, R.E., Quinn, M.T., Lambeth, J.D., and Griendling, K.K., Arterioscler. Thromb. Vasc. Biol., 2004, vol. 24, pp. 677–683.PubMedCrossRefGoogle Scholar
  56. 56.
    Ushio-Fukai, M., Griendling, K.K., Becker, P.L., Hilenski, L., Halleran, S., and Alexander, R.W., Arterioscler. Thromb. Vasc. Biol., 2001, vol. 21, pp. 489–495.PubMedCrossRefGoogle Scholar
  57. 57.
    Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P.L., Ma, Y., Griendling, K.K., and Alexander, R.W., J. Biol. Chem., 2001, vol. 276, pp. 48269–48275.PubMedGoogle Scholar
  58. 58.
    Li, Q., Harraz, M.M., Zhou, W., Zhang, L.N., Ding, W., Zhang, Y., Eggleston, T., Yeaman, C., Banfi, B., and Engelhardt, J.F., Mol. Cell. Biol., 2006, vol. 26, pp. 140–154.PubMedCrossRefGoogle Scholar
  59. 59.
    Miller, F.J., Filali, M., Huss, G.J., Stanic, B., Chamseddine, A., Barna, T.J., and Lamb, F.S., Circ. Res., 2007, vol. 101, pp. 663–671.PubMedCrossRefGoogle Scholar
  60. 60.
    Fisher, A.B., Antioxid. Redox. Signal., 2009, vol. 11, pp. 1349–1356.PubMedCrossRefGoogle Scholar
  61. 61.
    Martyn, K.D., Frederick, L.M., Von Loehneysen, K., Dinauer, M.C., and Knaus, U.G., Cell. Signal., 2006, vol. 18, pp. 69–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Ambasta, R.K., Kumar, P., Griendling, K.K., Schmidt, H.H.H.W., Busse, R., and Brandes, R.P., J. Biol. Chem., 2004, vol. 279, pp. 45935–45941.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen, K., Kirber, M.T., Xiao, H., Yang, Y., and Keaney, J.F., J. Cell Biol., 2008, vol. 181, pp. 1129–1139.PubMedCrossRefGoogle Scholar
  64. 64.
    Frangioni, J.V., Beahm, P.H., Shifrin, V., Jost, C.A., and Neel, B.G., Cell, 1992, vol. 68, pp. 545–560.PubMedCrossRefGoogle Scholar
  65. 65.
    Haj, F.G., Verveer, P.J., Squire, A., Neel, B.G., and Bastiaens, P.I.H., Science, 2002, vol. 295, pp. 1708–1711.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G., J. Biol. Chem., 1998, vol. 273, pp. 15366–15372.PubMedCrossRefGoogle Scholar
  67. 67.
    Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S., Nat. Methods, 2006, vol. 3, pp. 281–286.PubMedCrossRefGoogle Scholar
  68. 68.
    Helmann, J.D., Sci. STKE, 2002, vol. 2002, p. 46.CrossRefGoogle Scholar
  69. 69.
    Lee, C., Lee, S.M., Mukhopadhyay, P., Kim, S.J., Lee, S.C., Ahn, W.-S., Yu, M.-H., Storz, G., and Ryu, S.E., Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 1179–1185.PubMedCrossRefGoogle Scholar
  70. 70.
    Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A., Nature Biotechnol., 2002, vol. 20, pp. 87–90.CrossRefGoogle Scholar
  71. 71.
    Markvicheva, K.N., Bogdanova, E.A., Staroverov, D.B., Lukyanov, S., and Belousov, V.V., Methods. Mol. Biol., 2009, vol. 476, pp. 76–83.CrossRefGoogle Scholar
  72. 72.
    Niethammer, P., Grabher, C., Look, A.T., and Mitchison, T.J., Nature, 2009, vol. 459, pp. 996–999.PubMedCrossRefGoogle Scholar
  73. 73.
    Lemmon, M.A. and Schlessinger, J., Cell, 2010, vol. 141, pp. 1117–1134.PubMedCrossRefGoogle Scholar
  74. 74.
    Roepstorff, K., Grandal, M.V., Henriksen, L., Knudsen, S.L.J., Lerdrup, M., Grovdal, L., Willumsen, B.M., and Van Deurs, B., Traffic, 2009, vol. 10, pp. 1115–1127.PubMedCrossRefGoogle Scholar
  75. 75.
    Meng, T.-C., Fukada, T., and Tonks, N.K., Mol. Cell, 2002, vol. 9, pp. 387–399.PubMedCrossRefGoogle Scholar
  76. 76.
    Ross, S.H., Lindsay, Y., Safrany, S.T., Lorenzo, O., Villa, F., Toth, R., Clague, M.J., Downes, C.P., and Leslie, N.R., Cell. Signal., 2007, vol. 19, pp. 1521–1530.PubMedCrossRefGoogle Scholar
  77. 77.
    Anderie, I., Schulz, I., and Schmid, A., Exp. Cell Res., 2007, vol. 313, pp. 3189–3197.PubMedCrossRefGoogle Scholar
  78. 78.
    Flint, A.J., Tiganis, T., Barford, D., and Tonks, N.K., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 1680–1685.PubMedCrossRefGoogle Scholar
  79. 79.
    Mishina, N.M., Tyurin-Kuzmin, P.A., Markvicheva, K.N., Vorotnikov, A.V., Tkachuk, V.A., Laketa, V., Schultz, C., Lukyanov, S., and Belousov, V.V., Antioxid. Redox. Signal., 2011, vol. 14, pp. 1–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Jones, D.P. and Mason, H.S., J. Biol. Chem., 1978, vol. 253, pp. 4874–4880.PubMedGoogle Scholar
  81. 81.
    Jones, D.P., Am. J. Physiol., 1986, vol. 250, pp. 63–75.Google Scholar
  82. 82.
    Jones, D.P. and Kennedy, F.G., Biochem. Biophys. Res. Commun., 1982, vol. 105, pp. 419–424.PubMedCrossRefGoogle Scholar
  83. 83.
    Berridge, M.J., Cell. Calcium, 2006, vol. 40, pp. 405–412.PubMedCrossRefGoogle Scholar
  84. 84.
    Cheng, H. and Lederer, W.J., Physiol. Rev., 2008, vol. 88, pp. 1491–1545.PubMedCrossRefGoogle Scholar
  85. 85.
    Go, Y.-M., Duong, D.M., Peng, J., and Jones, D.P., J. Proteomics Bioinform., 2011, vol. 4, pp. 196–209.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Belousov
    • 1
    • 2
  • G. N. Enikolopov
    • 2
    • 3
  • N. M. Mishina
    • 1
    Email author
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  3. 3.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations