Russian Journal of Bioorganic Chemistry

, Volume 39, Issue 3, pp 223–244 | Cite as

Synthesis of the chromophores of fluorescent proteins and their analogs

  • M. S. Baranov
  • K. A. Lukyanov
  • I. V. Yampolsky
Article

Abstract

Members of the green fluorescent protein (GFP) family are widely used in experimental biology as genetically encoded fluorescent tags. Chromophores of GFP-like proteins share a common structural core: 3,5-dihydro-4H-imidazol-4-one. This review covers synthetic approaches to 3,5-dihydro-4H-imida-zol-4-ones, substituted at different positions. General, as well as specific methods, represented by single examples are considered. The most popular synthetic route to substituted 3,5-dihydro-4H-imidazol-4-ones includes synthesis of azlactones, followed by transformation into N-acyldehydroamino acids and, finally, cyclization into target heterocycles. Accordingly, the review is divided into three parts: the first part covers syntheses of azlactones, the second part covers main approaches to N-acyldehydroamino acids, and in the third part we summarize cyclizations of N-acyldehydroamino acids, as well as all other approaches to 3,5-dihydro-4H-imidazol-4-ones.

Keywords

fluorescent protein chromophore GFP azlactone imidazolone 

Abbreviations

Ar

aryl

CDI

carbonyldiimidazole

DABCO

1,4-diazabicyclo[2,2,2]octane

DBU

diazabicycloundecene

DDQ

2,3-dichloro-5,6-dicyano-1,4-benzoquinone

DEAD

diethyl azodicarboxylate

imidazolone

5-arylene-3,5-dihydro-4H-imi-dazole-4-one

DIPEA

diisopropylethylamine

GFP

green flu-orescent protein

HOBt

1-hydroxybenzotriazole

LDA

lithium diisopropylamide

MS

molecular sieves

oxazolone

5-arylidene-3,5-dihydro-4H-oxazol-4-one

NBS

N-bromosuccineimide

PMB

p-methoxybenzyl

Py

pyridine

TBDMS

tert-butyldime-thylsilyl

Ts

tosyl

FP

fluorescent protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chudakov, D.M., Matz, M.V., Lukyanov, S., and Lukyanov, K.A., Physiol. Rev., 2010, vol. 90, pp. 1103–1163.PubMedCrossRefGoogle Scholar
  2. 2.
    Ivashkin, P.E., Yampolsky, I.V., and Lukyanov, K.A., Russ. J. Bioorg. Chem., 2009, vol. 35, pp. 652–669.CrossRefGoogle Scholar
  3. 3.
    Subach, F.V. and Verkhusha, V.V., Chem. Rev., 2012, vol. 112, pp. 4308–4327.PubMedCrossRefGoogle Scholar
  4. 4.
    Heim, R., Prasher, D.C., and Tsien, R.Y., Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 12501–12504.PubMedCrossRefGoogle Scholar
  5. 5.
    Tomosugi, W., Matsuda, T., Tani, T., Nemoto, T., Kotera, I., Saito, K., Horikawa, K., and Nagai, T., Nat. Methods, 2009, vol. 6, pp. 351–353.PubMedCrossRefGoogle Scholar
  6. 6.
    Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., and Ward, W.W., Biochemistry, 1993, vol. 32, pp. 1212–1218.PubMedCrossRefGoogle Scholar
  7. 7.
    Chattoraj, M., King, B.A., Bublitz, G.U., and Boxer, S.G., Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 8362–8367.PubMedCrossRefGoogle Scholar
  8. 8.
    Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., and Miyawaki, A., Nat. Biotechnol., 2006, vol. 24, pp. 577–581.PubMedCrossRefGoogle Scholar
  9. 9.
    Henderson, J.N., Osborn, M.F., Koon, N., Gepshtein, R., Huppert, D., and Remington, S.J., J. Am. Chem. Soc., 2009, vol. 131, pp. 13212–13213.PubMedCrossRefGoogle Scholar
  10. 10.
    Piatkevich, K.D., Malashkevich, V.N., Almo, S.C., and Verkhusha, V.V., J. Am. Chem. Soc., 2010, vol. 132, pp. 10762–10770.PubMedCrossRefGoogle Scholar
  11. 11.
    Ward, W.W. and Bokman, S., H., Biochemistry, 1982, vol. 21, pp. 4535–4540.PubMedCrossRefGoogle Scholar
  12. 12.
    Palm, G.J., Zdanov, A., Gaitanaris, G.A., Stauber, R., Pavlakis, G.N., and Wlodawer, A., Nat. Struct. Biol., 1997, vol. 4, pp. 361–365.PubMedCrossRefGoogle Scholar
  13. 13.
    Brejc, K., Sixma, T.K., Kitts, P.A., Kain, S.R., Tsien, R.Y., Ormo, M., and Remington, S.J., Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 2306–2311.PubMedCrossRefGoogle Scholar
  14. 14.
    Agmon, N., Biophys. J., 2005, vol. 88, pp. 2452–2461.PubMedCrossRefGoogle Scholar
  15. 15.
    Niwa, H., Inouye, S., Hirano, T., Matsuno, T., Kojima, S., Kubota, M., Ohashi, M., and Tsuji, F., Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 13617–13 622.PubMedCrossRefGoogle Scholar
  16. 16.
    Yampolsky, I.V., Remington, S.J., Martynov, V.I., Potapov, V.K., Lukyanov, S.A., and Lukyanov, K.A., Biochemistry, 2005, vol. 44, pp. 5788–5793.PubMedCrossRefGoogle Scholar
  17. 17.
    Yampolsky, I.V., Kislukhin, A.A., Amatov, T.T., Shcherbo, D., Potapov, V.K., Lukyanov, S., and Lukyanov, K.A., Bioorg. Chem., 2008, vol. 36, pp. 96–104.PubMedCrossRefGoogle Scholar
  18. 18.
    Yampolsky, I.V., Balashova, T.A., and Lukyanov, K.A., Biochemistry, 2009, vol. 48, pp. 8077–8082.PubMedCrossRefGoogle Scholar
  19. 19.
    Ivashkin, P.E., Lukyanov, K.A., Lukyanov, S.A., and Yampolsky, I.V., J. Org. Chem., 2011, vol. 76, pp. 2782–2791.PubMedCrossRefGoogle Scholar
  20. 20.
    Palmer, C.D., The Chemistry of Heterocyclic Compounds, Vol. 60: Oxazoles: Synthesis, Reactions, and Spectroscopy, Part B, Weinheim: Wiley-VCH Verlag GmbH, KGaA, 2004.Google Scholar
  21. 21.
    Erlenmeyer, E.J., Justus Lieb. Ann. der Chem., 1893, vol. 275, pp. 1–8.CrossRefGoogle Scholar
  22. 22.
    Perkin, W.H., J. Chem. Soc., 1868, vol. 21, pp. 181–186.CrossRefGoogle Scholar
  23. 23.
    Cativiela, C., Diaz-De-Villegas M.D., Melendez E., J. Het. Chem., 1985, vol. 22, pp. 1655–1657.CrossRefGoogle Scholar
  24. 24.
    Ryuichi, K., Tsunetoshi, H., Kunio, H., Masayoshi, O., Mariko, H., Masafumi, F., and Toshio, F., J. Med. Chem., 1995, vol. 14, pp. 2728–2742.Google Scholar
  25. 25.
    Cornforth, J. and Hui, D., J. Chem. Soc. PT1, 1990, vol. 5, pp. 1459–1462.Google Scholar
  26. 26.
    Winton, D.J., J. Chem. Soc. PT1, 1981, pp. 344–346.Google Scholar
  27. 27.
    Marrian, D.H., Russell, P.B., and Todd, A.R., Biochem. J., 1949, vol. 45, pp. 533–537.PubMedGoogle Scholar
  28. 28.
    Kidwai, M. and Kumar, R., Org. Prep. Proced. Int., 1998, vol. 4, pp. 451–453.CrossRefGoogle Scholar
  29. 29.
    Gelmi, M.L., Clerici, F., and Melis, A., Tetrahedron, 1997, vol. 53, pp. 1843–1854.CrossRefGoogle Scholar
  30. 30.
    Kokai, T.K., Chem. Abstr., 1982, vol. 96, p. 142836.Google Scholar
  31. 31.
    Rao, P.S. and Venkataratnam, R.V., Indian J. Chem. Sect., vol. 33, pp. 984–985.Google Scholar
  32. 32.
    Zavyalov, S.I., Dorofeyeva, O.V., and Rumyantseva, Y.Y., Chem. Abstr., 1995, vol. 122, p. 31378.Google Scholar
  33. 33.
    Topuzyan, V.O. and Khachvankyan, G.Y., Chem. Abstr., 1998, vol. 128, p. 321583.Google Scholar
  34. 34.
    Wang, Y., Shi, D., Lu, Z., and Dai, G., Synth. Commun., 2000, vol. 30, pp. 707–712.CrossRefGoogle Scholar
  35. 35.
    Gaset, A. and Gorrichon, J.P., Synth. Commun., 1982, vol. 12, pp. 71–79.CrossRefGoogle Scholar
  36. 36.
    Boruah, A., Baruah, P.P., and Sandhu, J.S., J. Chem. Res. Synop., 1998, pp. 614–615.Google Scholar
  37. 37.
    Slater, G. and Somerville, A.W., Tetrahedron, 1966, vol. 22, pp. 35–42.CrossRefGoogle Scholar
  38. 38.
    Haasbroeka, P.P., Oliverb, D.W., and Carpyc, A.J., J. Mol. Struct., 2004, vol. 690, pp. 89–94.CrossRefGoogle Scholar
  39. 39.
    Arrieta, A., Cossio, F.P., and Palomo, C., Tetrahedron, 1985, vol. 41, pp. 1703–1712.CrossRefGoogle Scholar
  40. 40.
    Khosropour, A.R., Khodaei, M.J., and Hoseini, J., J. Het. Chem., 2008, vol. 3, pp. 683–686.CrossRefGoogle Scholar
  41. 41.
    Cabaret, D., Liu, J., and Wakselman, M., Synthesis, 1994, vol. 5, pp. 480–483.CrossRefGoogle Scholar
  42. 42.
    Melhado, A.D., Luparia, M., and Dean, F.T., J. Am. Chem. Soc., 2007, vol. 129, pp. 12638–12639.PubMedCrossRefGoogle Scholar
  43. 43.
    Hoyng, C.F., Mckenna, M.G., and Walters, D.L., Synthesis, 1982, vol. 3, pp. 191–193.CrossRefGoogle Scholar
  44. 44.
    Hashimoto, M., Matsumoto, M., and Terashima, S., Tetrahedron, 2003, vol. 59, pp. 3041–3062.CrossRefGoogle Scholar
  45. 45.
    Ritter, T., Kvæno, L., Werder, M., Hauser, H., and Carreira, E.M., Org. Biomol. Chem., 2005, vol. 3, pp. 3514–3523.PubMedCrossRefGoogle Scholar
  46. 46.
    Takacs, E., Berente, Z., Hada, V., Maho, S., Kollar, L., and Skoda-Foldes, R., Tetrahedron, 2009, vol. 65 P, pp. 4659–4663.CrossRefGoogle Scholar
  47. 47.
    Kumar, P., Mishra, H.D., and Mukerjee, A.K., Synthesis, 1980, vol. 10, pp. 836–839.CrossRefGoogle Scholar
  48. 48.
    Tripathy, P.K. and Mukerjee, A.K., Synthesis, 1985, vol. 3, pp. 285–288.CrossRefGoogle Scholar
  49. 49.
    Charles, S.C. and Burt, C.P., J. Am. Chem. Soc., 1955, vol. 77, pp. 1544–1546.CrossRefGoogle Scholar
  50. 50.
    El-Hashash, M.A., Afify, A.A., Kaddah, A.M., and El-Kady, S.S., Synthesis, 1981, vol. 10, p. 798.CrossRefGoogle Scholar
  51. 51.
    Crawford, M. and Little, W.T., J. Chem. Soc., 1959, pp. 729–732.Google Scholar
  52. 52.
    Mestdagh, H. and Pancrazi, A., Tetrahedron, 1984, vol. 40, pp. 3399–3413.CrossRefGoogle Scholar
  53. 53.
    Terence, C.C., Charles, R.F., Omima, N., and Andrew, W., J. Am. Chem. Soc., 1980, vol. 102, pp. 6828–6837.CrossRefGoogle Scholar
  54. 54.
    Kuroda, Y., Ueda, H., Nozawa, H., and Ogoshi, H., Tetrahedron Lett., 1997, vol. 38, pp. 7901–7904.CrossRefGoogle Scholar
  55. 55.
    Arief, M.M., Phosphorus, Sulfur and Silicon, 1997, vol. 127, pp. 159–165.CrossRefGoogle Scholar
  56. 56.
    Aly, A.A., J. Het. Chem., 2008, vol. 45, pp. 993–998.CrossRefGoogle Scholar
  57. 57.
    Cornforth, J. and Hui, D., J. Chem. Soc. PT1, 1991, pp. 2183–2187.Google Scholar
  58. 58.
    Attenburrow, J., Elliott, D.F., and Penny, G.F., J. Chem. Soc., 1948, pp. 310–318.Google Scholar
  59. 59.
    Nestor, J.J., Ho, T.L., Simpson, R.A., Horner, B.L., Jones, G.H., McRae, G.I., and Vickery, B.H., J. Med. Chem., 1982, vol. 7, pp. 795–801.CrossRefGoogle Scholar
  60. 60.
    Chandrasekhar, S. and Karri, P., Tetrahedron Lett., 2007, vol. 48, pp. 785–786.CrossRefGoogle Scholar
  61. 61.
    Dhar, S.L. and Singh, A., Tetrahedron Lett., 2003, vol. 44, pp. 5637–5640.CrossRefGoogle Scholar
  62. 62.
    Conway, P.A., Devine, K., and Paradisi, F., Tetrahedron, 2009, vol. 65, pp. 2935–2938.CrossRefGoogle Scholar
  63. 63.
    Dhar, S.L., Rai, V.K., and Yadav, B.S., Tetrahedron, 2009, vol. 65, pp. 1306–1315.CrossRefGoogle Scholar
  64. 64.
    Graham, D.W., Ashton, W.T., Barash, L., Brown, J.E., Brown, R.D., Canning, L.F., Chen, A., Springer, J.P., and Rogers, E.F., J. Med. Chem., 1987, vol. 304, pp. 1074–1090.CrossRefGoogle Scholar
  65. 65.
    O’Brien, J.L. and Niemann, C., J. Am. Chem. Soc., 1957, vol. 79, pp. 80–85.CrossRefGoogle Scholar
  66. 66.
    Mauldin, S.C., Hornback, W.J., and Munroe, J.E., J. Chem. Soc. PT1, 2001, vol. 13, pp. 1554–1558.Google Scholar
  67. 67.
    Ward, D.E., Vazquez, A., and Soledade, M.C., J. Org. Chem., 1999, vol. 64, pp. 1657–1666.PubMedCrossRefGoogle Scholar
  68. 68.
    Carter, H.E., Handler, P., and Melville, D.B., J. Biol. Chem., 1939, vol. 129, pp. 359–371.Google Scholar
  69. 69.
    Toshishige, I., Bull. Chem. Soc. Jpn., 1972, vol. 45, p. 1254.CrossRefGoogle Scholar
  70. 70.
    Pines, S.H., Kozlowski, M.A., and Karady, S., J. Org. Chem., 1969, vol. 34, pp. 1621–1627.CrossRefGoogle Scholar
  71. 71.
    Carter, H.E. and Risser, W.C., J. Biol. Chem., 1941, vol. 139, pp. 255–262.Google Scholar
  72. 72.
    Torino, D., Mollica, A., Pinnen, F., Feliciani, F., Lucente, G., Fabrizi, G., Portalone, G., Davis, P., Lai, J., Ma, S.-W., Porreca, F., and Hruby, V.J., J. Med. Chem., 2010, vol. 11, pp. 4550–4555.CrossRefGoogle Scholar
  73. 73.
    Breitholle, E.G. and Stammer, C.H., J. Org. Chem., 1976, vol. 41, pp. 1344–1349.PubMedCrossRefGoogle Scholar
  74. 74.
    Lott, R.S., Breitholle, E.G., and Stammer, C.H., J. Org. Chem., 1980, vol. 6, pp. 1151–1153.CrossRefGoogle Scholar
  75. 75.
    McCapra, F., Razavi, Z., and Neary, A.P., J. Chem. Soc. Chem. Commun., 1988, vol. 12, pp. 790–791.CrossRefGoogle Scholar
  76. 76.
    Riordan, J.M. and Stammer, C.H., Tetrahedron Lett., 1971, vol. 12, pp. 4969–4972.CrossRefGoogle Scholar
  77. 77.
    Doherty, D.G., Tietzman, J.E., and Bergmann, M., J. Biol. Chem., 1943, vol. 147, pp. 617–637.Google Scholar
  78. 78.
    Phelps, D.J. and Gaeta, F.C., Synthesis, 1982, vol. 3, pp. 234–235.CrossRefGoogle Scholar
  79. 79.
    Shaw, K.N., Mcmillan, A., Gudmudson, A.G., and Armstrong, M.D., J. Org. Chem., 1958, vol. 23, pp. 1171–1178.CrossRefGoogle Scholar
  80. 80.
    Sheehan, J.C. and Duggins, W.E., J. Am. Chem. Soc., 1950, vol. 72, pp. 2475–2477.CrossRefGoogle Scholar
  81. 81.
    Molina, P., Fresneda, P.M., and Hurtado, F., Synth. Commun., 1987, vol. 17, pp. 485–490.CrossRefGoogle Scholar
  82. 82.
    Molina, P., Tarraga, A., and Lidon, M.J., J. Chem. Soc. PT1, 1990, pp. 1727–1731.Google Scholar
  83. 83.
    Mustafa, A., Asker, W., Hamid, A., Khalifa, E., and Zayed, E.M., Justus Lieb. Ann. der Chem., 1968, vol. 713, pp. 151–161.CrossRefGoogle Scholar
  84. 84.
    Schmidt, C.L.A., The Chemistry of the Amino Acids and Proteins, Springfield, Ill., 1944.Google Scholar
  85. 85.
    Plöchl, J., Chem. Ber., 1884, pp. 1616–1624.Google Scholar
  86. 86.
    Alkaabi, S.S. and Shawal, A.S., Can. J. Chem., 1992, vol. 10, pp. 2515–2519.CrossRefGoogle Scholar
  87. 87.
    Phelps, D.J., Godreau, P.V., and Nicholas, E.S., J. Chem. Soc. PT2, 1981, pp. 140–142.Google Scholar
  88. 88.
    Shaw, E. and Mcdowell, J., J. Am. Chem. Soc., 1949, vol. 71, pp. 1691–1698.CrossRefGoogle Scholar
  89. 89.
    Khan, N.H., Synth. Commun., 1978, vol. 8, pp. 497–510.CrossRefGoogle Scholar
  90. 90.
    Cativiela, C., Garcia, J.I., and Melendez, E., Synthesis, 1982, vol. 9, pp. 763–765.CrossRefGoogle Scholar
  91. 91.
    Pelger, R. and Markert, G., Chem. Ber., 1957, vol. 90, pp. 1494–1499.CrossRefGoogle Scholar
  92. 92.
    Kartar, S.N. and Jnanendra, N.R., J. Chem. Soc., 1931, pp. 976–980.Google Scholar
  93. 93.
    Stafforst, T. and Diederichsen, U., Eur. J. Org. Chem., 2007, vol. 6 P, pp. 899–911.CrossRefGoogle Scholar
  94. 94.
    Tu, S., Zhang, J., Jia, R., Zhang, Y., Jiang, B., and Shi, F., Synthesis, 2007, vol. 4, pp. 558–565.CrossRefGoogle Scholar
  95. 95.
    Guo, Y.-M., Oike, H., Saeki, N., and Aida, N., Ang. Chem., 2004, vol. 116, pp. 5023–5026.CrossRefGoogle Scholar
  96. 96.
    Rahman, A.N., Khalil, A.M., and Manna, M.A., Phosphorus, Sulfur and Silicon, 1991, vol. 60, nos. 3‐4, p. 159.CrossRefGoogle Scholar
  97. 97.
    Hughes, A.B., Amino Acids, Peptides and Proteins in Organic Chemistry, vol. 1: Origins and Synthesis of Amino Acids, Weinheim: Wiley-VCH Verlag GmbH, KGaA, 2009.Google Scholar
  98. 98.
    Bonauer, C., Walenzyk, T., and Konig, B., Synthesis, 2006, vol. 1, pp. 1–21.Google Scholar
  99. 99.
    Schmidt, U., Lieberknecht, A., and Wild, J., Synthesis, 1988, vol. 3, pp. 159–173.CrossRefGoogle Scholar
  100. 100.
    Manis, P.A. and Rathke, M.W., J. Org. Chem., 1980, vol. 24 P, pp. 4952–4954.CrossRefGoogle Scholar
  101. 101.
    Moriya, N., Yoneda, N., Miyoshi, M., and Matsumoto, K., J. Org. Chem., 1982, vol. 1, pp. 94–98.CrossRefGoogle Scholar
  102. 102.
    Zupet, R. and Tisler, M., J. Org. Chem., 1994, vol. 2, pp. 507–508.CrossRefGoogle Scholar
  103. 103.
    Goodall, K. and Parsons, A.F., Tetrahedron Lett., 1995, vol. 36, pp. 3259–3260.CrossRefGoogle Scholar
  104. 104.
    Li, K.W., Wu, J., Xing, W., and Simon, J.A., J. Am. Chem. Soc., 1996, vol. 118, pp. 7237–7238.CrossRefGoogle Scholar
  105. 105.
    Cherney, R.J. and Wang, L., J. Org. Chem., 1996, vol. 61, pp. 2544–2546.CrossRefGoogle Scholar
  106. 106.
    Somekh, L. and Shanzer, A., J. Org. Chem., 1983, vol. 48, pp. 907–908.CrossRefGoogle Scholar
  107. 107.
    Sai, H., Ogiku, T., and Ohmizu, H., Synthesis, 2003, vol. 2, pp. 201–205.CrossRefGoogle Scholar
  108. 108.
    Miller, M., J. Org. Chem., 1980, vol. 45, pp. 3131–3132.CrossRefGoogle Scholar
  109. 109.
    Wulff, G. and Bohnke, H., Ang. Chem., 1984, vol. 96, pp. 362–363.Google Scholar
  110. 110.
    Ferreira, P.M.T., Maia, H.L.S., Monteiro, L.S., and Sacramento, J., J. Chem. Soc. PT1, 1999, pp. 3697–3703.Google Scholar
  111. 111.
    Stohlmeyer, M.M., Tanaka, H., and Wandless, N.J., J. Am. Chem. Soc., 1999, vol. 121, pp. 6100–6102.CrossRefGoogle Scholar
  112. 112.
    Rich, D.H. and Tam, J.P., J. Org. Chem., 1977, vol. 42, pp. 3815–3820.PubMedCrossRefGoogle Scholar
  113. 113.
    Walter, R. and Roy, I., J. Org. Chem., 1971, vol. 36, pp. 2561–2563.PubMedCrossRefGoogle Scholar
  114. 114.
    Horikawa, E., Kodaka, M., Nakahara, Y., Okuno, H., and Nakamura, K., Tetrahedron Lett., 2001, vol. 42, pp. 8337–8339.CrossRefGoogle Scholar
  115. 115.
    Grim, M.D., Chauhan, V., Shimohigashi, Y., Kolar, A.J., and Stammer, C.H., J. Org. Chem., 1981, vol. 46, pp. 2671–2673.CrossRefGoogle Scholar
  116. 116.
    Manis, P.A. and Rathke, M.W., J. Org. Chem., 1980, vol. 45, pp. 4952–4954.CrossRefGoogle Scholar
  117. 117.
    Graham, D.W., Ashton, W.T., Barash, L., Brown, J.E., Brown, R.D., Canning, L.F., Chen, A., Springer, J.P., and Rogers, E.F., J. Med. Chem., 1987, vol. 6, pp. 1074–1090.CrossRefGoogle Scholar
  118. 118.
    Labia, R. and Morin, C., J. Org. Chem., 1986, vol. 51, pp. 249–251.CrossRefGoogle Scholar
  119. 119.
    Adamczyk, M., Akireddy, S.R., and Reddy, R.E., Org. Lett., 2001, vol. 3, pp. 3157–3159.PubMedCrossRefGoogle Scholar
  120. 120.
    Krause, N., Hoffmann-Roder, A., and Canisius, J., Synthesis, 2002, vol. 12, pp. 1759–1775.CrossRefGoogle Scholar
  121. 121.
    Choi, J., Shin, J.E., and Chun, K.H., Bull. Korean Chem. Soc., 1999, vol. 20, pp. 1123–1126.Google Scholar
  122. 122.
    Kimura, R., Nagano, T., and Kinoshita, H., Bull. Chem. Soc. Jpn., 2002, vol. 75, pp. 2517–2525.CrossRefGoogle Scholar
  123. 123.
    Buck, R.T., Clarke, P.A., Coe, D.M., Drysdale, M.J., Ferris, L., Haigh, D., Moody, C.J., Pearson, N.D., and Swann, E., Chem.-Eur. J., 2000, vol. 6, pp. 2160–2167.PubMedCrossRefGoogle Scholar
  124. 124.
    Xu, F., Zacuto, M., Yoshikawa, N., Desmond, R., Hoerrner, S., Itoh, T., Journet, M., Humphrey, G.R., Cowden, C., Strotman, N., and Devine, P., J. Org. Chem., 2010, vol. 75, pp. 7829–7841.CrossRefGoogle Scholar
  125. 125.
    Enders, D., Chen, Z., and Raabe, G., Synthesis, 2005, vol. 2, pp. 306–311.CrossRefGoogle Scholar
  126. 126.
    Oesterle, T. and Simchen, G., Synthesis, 1985, vol. 4, pp. 403–406.CrossRefGoogle Scholar
  127. 127.
    Seethaler, T. and Simchen, G., Synthesis, 1986, vol. 5, pp. 390–392.CrossRefGoogle Scholar
  128. 128.
    Nagano, T. and Kinoshita, H., Bull. Chem. Soc. Jpn., 2000, vol. 73, pp. 1605–1613.CrossRefGoogle Scholar
  129. 129.
    Burk, M.J., Allen, J.G., Kiesman, W., and Stoffan, K.M., Tetrahedron Lett., 1997, vol. 38, pp. 1309–1312.CrossRefGoogle Scholar
  130. 130.
    Kitagawa, F., Murase, M., and Kitamura, N., J. Org. Chem., 2002, vol. 15, pp. 2524–2531.CrossRefGoogle Scholar
  131. 131.
    Abreu, A.S., Ferreira, P.M., Queiroz, M.J., and Gatto, E., Sonogashira, Eur. J. Org. Chem., 2004, vol. 10, pp. 3985–3991.CrossRefGoogle Scholar
  132. 132.
    Granacher, C. and Gulbas, G., Helv. Chim. Acta, 1927, vol. 10, pp. 819–826.CrossRefGoogle Scholar
  133. 133.
    Petersen, A., Riber, P., Andersen, L.H., and Brondsted, N., Synthesis, 2007, vol. 23, pp. 3635–3638.Google Scholar
  134. 134.
    Chen, K.Y., Cheng, Y.-M., Cheng-Hsuan, L., Che Ng-Chih, H., Mei-Lin, H., Lee, G., and Chou, P.T., J. Am. Chem. Soc., 2007, vol. 129, pp. 4534–4535.PubMedCrossRefGoogle Scholar
  135. 135.
    Pruger, P. and Bach, Y., Synthesis, 2007, vol. 7, pp. 1103–1106.Google Scholar
  136. 136.
    Xiang, H., Alasdair, F.B., and Tonge, P.J., Org. Lett., 2002, vol. 9, pp. 1523–1526.Google Scholar
  137. 137.
    Erlenmeyer, E., Chem. Ber., 1900, vol. 33, pp. 2036–2041.CrossRefGoogle Scholar
  138. 138.
    Lykkeberg, J. and Klitgaard, N.A., Acta Chem. Scand., 1972, vol. 26, pp. 2687–2694.CrossRefGoogle Scholar
  139. 139.
    McCapra, F., Razavi, Z., and Neary, A.P., J. Chem. Soc., 1988, vol. 12, pp. 790–791.Google Scholar
  140. 140.
    Yang, J.-S., Huang, G.-J., Liu, I.-H., and Peng, S.-M., Chem. Commun., 2008, vol. 11, pp. 1344–1346.CrossRefGoogle Scholar
  141. 141.
    Bhatt, P.V., Wadla, W., Rain, I.M., and Pravin, M.P., Het. Comm., 2006, vol. 1, pp. 79–82.Google Scholar
  142. 142.
    Lee, C., Chen, Y., Lin, H., Jhong, Y., Chang, C., Tsai, C., Kao, C., and Chien, N., Tetrahedron, 2012, vol. 68, pp. 5898–5907.CrossRefGoogle Scholar
  143. 143.
    Mazaahir, K. and Mohan, R., J. Chin. Chem. Soc., 2003, vol. 50, pp. 1075–1078.Google Scholar
  144. 144.
    Cativiela, C. and Melendez, E., Hetereocycles, 1984, vol. 2, pp. 2775–2781.Google Scholar
  145. 145.
    Pradeer, K.T., A Facile, Synthesis, 1985, vol. 3 P, pp. 285–288.Google Scholar
  146. 146.
    Bondock, S., Khalifa, W., and Fadda, A.A., Synth. Commun., 2006, vol. 36, pp. 1601–1612.CrossRefGoogle Scholar
  147. 147.
    Zarif, M., El-Sheriff, H.A., and Tadros, M.E., Bull. Chem. Soc. Jpn., 1982, vol. 7, pp. 2267–2270.Google Scholar
  148. 148.
    Topuzyan, V.O., Arutyunyan, L.G., and Oganesyan, A.A., Russ. J. Org. Chem., 2007, vol. 6, pp. 868–871.CrossRefGoogle Scholar
  149. 149.
    Shimomura, O., FEBS Lett., 1979, vol. 104, pp. 220–222.CrossRefGoogle Scholar
  150. 150.
    Kidwai, A.R. and Devasia, G.M., J. Org. Chem., 1962, vol. 27, pp. 4527–4531.CrossRefGoogle Scholar
  151. 151.
    Lehr, H., Karlan, S., and Goldberg, M.W., J. Am. Chem. Soc., 1953, vol. 75, pp. 3640–3645.CrossRefGoogle Scholar
  152. 152.
    Kjaer, A., Acta Chem. Scand., 1953, vol. 7, pp. 1030–1035.CrossRefGoogle Scholar
  153. 153.
    Griffiths, G.J., Hauck, M.B., Imwinkelried, R., Kohr, J., Roten, C.A., and Stucky, G.C., J. Org. Chem., 1999, vol. 22, pp. 8084–8089.CrossRefGoogle Scholar
  154. 154.
    Janosik, T., Johnson, A.-L., and Dergman, G., Tetrahedron, 2002, vol. 58, pp. 2813–2819.CrossRefGoogle Scholar
  155. 155.
    Devasia, M., Tetrahedron Lett., 1976, vol. 17, pp. 571–572.CrossRefGoogle Scholar
  156. 156.
    Ekeley, J.B. and Ronzio, A.R., J. Am. Chem. Soc., 1935, vol. 57, pp. 1353–1356.CrossRefGoogle Scholar
  157. 157.
    Ito, Y., Inulushi, Y., and Saegusa, J., Synth. Commun., 1974, vol. 4, pp. 289–295.CrossRefGoogle Scholar
  158. 158.
    Brunken, J. and Bach, G., Chem. Ber., 1956, vol. 89, pp. 1363–1373.CrossRefGoogle Scholar
  159. 159.
    Ramachandra, S.H., Tetrahedron Lett., 1984, vol. 25, pp. 363–366.CrossRefGoogle Scholar
  160. 160.
    Goldschmidt, S. and Steigerwald, Ch., Chem. Ber., 1925, vol. 58, pp. 1346–1353.Google Scholar
  161. 161.
    Takeuchi, H., Hagiwara, S., and Eguchi, S., Tetrahedron, 1989, vol. 45, pp. 6375–6386.CrossRefGoogle Scholar
  162. 162.
    Barbosa, Y., Hart, D.J., and Magomedov, N.A., Tetrahedron, 2006, vol. 62, pp. 8748–8754.CrossRefGoogle Scholar
  163. 163.
    Wu, L. and Burgess, K., J. Am. Chem. Soc., 2008, vol. 130, pp. 4089–4096.PubMedCrossRefGoogle Scholar
  164. 164.
    Baldridge, A., Solntsev, K.M., Song, C., Tanioka, N., Kowalik, J., Hardcastle, K., and Tolbert, L.M., Chem. Commun., 2010, vol. 46, pp. 5686–5688.CrossRefGoogle Scholar
  165. 165.
    Ruhemann, S. and Cunnington, A.V., J. Chem. Soc., 1899, vol. 75, pp. 954–963.CrossRefGoogle Scholar
  166. 166.
    Lerestif, J.M., Bazureau, J.P., and Hamelin, J., Tetrahedron Lett., 1993, vol. 49, pp. 4639–4642.CrossRefGoogle Scholar
  167. 167.
    Lerestif, J.M., Bazureau, J.P., and Hamelin, J., Tetrahedron, 1995, vol. 51, pp. 6757–6774.CrossRefGoogle Scholar
  168. 168.
    Yokoyama, M., Menjo, Y., and Togo, H., Synthesis, 1994, vol. 12, pp. 1467–1471.CrossRefGoogle Scholar
  169. 169.
    Kerneur, G., Lerestif, J.M., Bazureau, P., and Hamelin, J., Synthesis, 1997, vol. 3, pp. 287–290.CrossRefGoogle Scholar
  170. 170.
    Baldridge, A., Kowalik, J., and Tolbert, L.M., Synthesis, 2010, vol. 14, pp. 2424–2437.Google Scholar
  171. 171.
    Gong, X., Yang, H., Liu, H., Jiang, Y., Zhao, Y., and Fu, H., Org. Lett., 2010, vol. 14, pp. 3128–3131.CrossRefGoogle Scholar
  172. 172.
    Fresneda, P.M., Molina, P., and Sanz, M.A., Synlett, 2000, vol. 8, pp. 1190–1193.Google Scholar
  173. 173.
    Oumouch, S., Bourotte, M., Schmitt, M., and Bourguignon, J.-J., Synthesis, 2005, vol. 1, pp. 25–28.Google Scholar
  174. 174.
    Paige, J.S., Wu, K.Y., and Jaffrey, S.R., Science, 2011, vol. 333, pp. 642–646.PubMedCrossRefGoogle Scholar
  175. 175.
    Paige, J.S., Nguyen-Duc, T., Song, W., and Jaffrey, S.R., Science, 2012, vol. 335, pp. 1194–1196.PubMedCrossRefGoogle Scholar
  176. 176.
    Baldridge, A., Feng, S.H., Chang, Y.T., and Tolbert, L.M., Combinat. Chem., 2011, vol. 13, pp. 214–217.Google Scholar
  177. 177.
    Chuang, W.T., Chen, B.S., Chen, K.Y., Hsieh, C.C., and Chou, P.T., Chem. Commun., 2009, vol. 7, pp. 6982–6984.CrossRefGoogle Scholar
  178. 178.
    Baranov, M.S., Lukyanov, K.A., Borissova, A.O., Shamir, J., Kosenkov, D., Slipchenko, L.V., Tolbert, L.M., Yampolsky, I.V., and Solntsev, K.M., J. Am. Chem. Soc., 2012, vol. 134, pp. 6025–6032.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. S. Baranov
    • 1
  • K. A. Lukyanov
    • 1
  • I. V. Yampolsky
    • 1
  1. 1.Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations