Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 37, Issue 2, pp 151–167 | Cite as

Fluorescent semiconductor nanocrystals (quantum dots) in protein biochips

  • V. A. Oleinikov
Review Papers

Abstract

Understanding the biological processes in cells, tissues, and organisms requires the identification and analysis of multiple biological objects and the mechanisms of their functioning and regulation. The biological chip (biochip) technique is one of the most efficient tools for these tasks. Biochips are highly efficient and can quantitatively register multiple molecules simultaneously in samples of microscopic volume. Biochips allow the parallel genomic or proteomic analysis of normal or pathologically modified cells and tissues and a comparative analysis to elucidate disease-related changes. Fluorescent dyes used for signal readout from biochips have the following disadvantages: low photostability, low brightness, and the presence of a fluorescent background. It was recently shown that these limitations can be removed if fluorescent semiconductor nanocrystals (quantum dots) are used. Individual quantum dots in the form of colloid nanocrystals (QDs) are easily registered by conventional microscopic equipment due to their high brightness; they are extremely resistant to photobleaching and provide unique opportunities for multiplexing. QDs are ideal fluorophores for information readout from biochips and allow for the detection of single molecules.

The present work is aimed at developing approaches for the use of QDs in biochip-based detection systems. The possibilities of using QDs in both planar (or matrix) biochips and suspension (or liquid) biochips, which are undergoing intensive development, are demonstrated. The use of the latter in analytical systems for the simultaneous identification of multiple objects in proteomics, genomics, drug testing, and clinical diagnostics is currently increasing. These systems are based on spectrally coded elements (usually polymer microspheres). An advantage of liquid biochips over matrix planar solid biochips is the possibility of the free movement of microspheres in three-dimensional space. Organic fluorophores allow the realization of a limited number of codes, i.e., objects analyzed simultaneously (multiplexing), while semiconductor QDs make possible a significant increase in both biochip multiplexing and the photostability and sensitivity of the biochips. In addition, the use of FRET (Foerster resonance energy transfer) in liquid biochips makes possible an increase in the detection specificity. The absence of a background signal from the fluorescent labels not bound to the microparticles increases the sensitivity of the analysis and provides additional opportunities for multiplex analysis and diagnostics.

Thus, a combination of the biochip technique and semiconductor QDs makes it possible to increase the method’s sensitivity and the number of objects detected (the degree of multiplexing). This combination is likely to enable a significant breakthrough in proteomics, particularly in the development of new drugs, clinical diagnostics, identification of molecular markers, and elucidation of the intracellular processes.

Keywords

proteomics microchips biochips quantum dots fluorescence flow cytometry microspectroscopy diagnostics 

Abbreviations

QDs

colloid nanocrystal quantum dots

FRET

Foerster resonance energy transfer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoll, D., Templin, M.F., Schrenk, M., Traub, P.C., Vohringer, C.F., and Joos, T.O., Front Biosci., 2002, vol. 7, pp. 13–32.CrossRefGoogle Scholar
  2. 2.
    Stoll, D., Bachmann, J., Templin, M.F., and Joos, T.O., Targets, 2004, vol. 3, p. 24.Google Scholar
  3. 3.
    Chen, C.-S. and Zhu, H., BioTechniques, 2006, vol. 40, p. 423.PubMedCrossRefGoogle Scholar
  4. 4.
    Chechetkin, V.R., Prokopenko, D.V., Makarov, A.A., and Zasedatelev, A.S., Ross. Nanotekhnol., 2006, vol. 1, pp. 13–27.Google Scholar
  5. 5.
    Gracey, A.Y. and Cossins, A.R., Annu. Rev. Physiol., 2003, vol. 65, pp. 231–259.PubMedCrossRefGoogle Scholar
  6. 6.
    Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A., Anal. Biochem., 2000, vol. 278, pp. 123–131.PubMedCrossRefGoogle Scholar
  7. 7.
    Tao, S.C., Chen, C.S., and Zhu, H., Comb. Chem. High Throughput Screen, 2007, vol. 10, pp. 706–718.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, Y., Lee, E.K., Cho, Y.W., Matsui, T., Kang, I.C., Kim, T.S., and Han, M.H., Proteomics, 2003, vol. 3, pp. 2289–2304.PubMedCrossRefGoogle Scholar
  9. 9.
    Sasakura, Y., Kanda, K., Yoshimura-Suzuki, T., Matsui, T., Fukuzono, S., and Shimizu, T., Biochemistry, 2005, vol. 44, pp. 9598–9605.PubMedCrossRefGoogle Scholar
  10. 10.
    Zha, H., Raffeld, M., Charboneau, L., Pittaluga, S., Kwak, L.W., and Petricoin, E. 3rd, Liotta, L.A., and Jaffe, E.S., Lab. Invest., 2004, vol. 84, pp. 235–244.PubMedCrossRefGoogle Scholar
  11. 11.
    Chan, S.M., Weng, A.P., Tibshirani, R., Aster, J.C., and Utz, P.J., Blood, 2007, vol. 110, pp. 278–286.PubMedCrossRefGoogle Scholar
  12. 12.
    Li, B., Zhou, D., Wang, Z., Song, Z., Wang, H., Li, M., Dong, X., Wu, M., Guo, Z., and Yang, R., Microbes. Infect., 2008, vol. 10, pp. 45–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Xu, R., Gan, X., Fang, Y., Zheng, S., and Dong, Q., Anal. Biochem., 2007, vol. 362, pp. 69–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Mirzabekov, A.D., Vestn. Ross. Akad. Nauk, 2003, vol. 73, p. 412.Google Scholar
  15. 15.
    Zajac, A., Song, D., Qian, W., and Zhukov, T., Colloids Surf., 2007, vol. 58, pp. 309–314.CrossRefGoogle Scholar
  16. 16.
    Yuk, C.S., Lee, H.K., Kim, H.T., Choi, Y.K., Lee, B.C., Chun, B.H., and Chung, N., Biotechnol. Lett., 2004, vol. 26, pp. 1563–1568.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu, H., Hu, S., Jona, G., Zhu, X., Kreiswirth, N., Willey, B.M., Mazzulli, T., Liu, G., Song, Q., Chen, P., Cameron, M., Tyler, A., Wang, J., Wen, J., Chen, W., Compton, S., and Snyder, M., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 4011–4016.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, A.M., Dave, S., Nie, S., True, L., and Gao, X., Expert. Rev. Mol. Diagn., 2006, vol. 6, pp. 231–244.PubMedCrossRefGoogle Scholar
  19. 19.
    Kolchinskii, A.M., Barskii, V.E., and Zasedatelev, A.S., Mol. Biol., 2007, vol. 41, pp. 757–764.Google Scholar
  20. 20.
    Ryabykh, T.P., Osipova, T.V., Dement’eva, E.I., Rubina, A.Yu., Darii, E.I., Baryshnikov, A.Yu., Zasedatelev, A.S., and Mirzabekov, A.D., Ross. Bioterapevt. Zh., 2004, vol. 3, pp. 30–31.Google Scholar
  21. 21.
    Gryadunov, D.A., Zimenkov, D.V., Mikhailovich, V.M., Nasedkina, T.V., Dement’eva, E.I., Rubina, A.Yu., Pan’kov, S.V., Barskii, V.E., and Zasedatelev, A.S., Med. Alfavit. Lab., 2009, vol. 3, pp. 10–14.Google Scholar
  22. 22.
    Protein Microarray Technology, Kambhampati, D., Ed., Weinheim: Wiley-VCH Verlag, 2004.Google Scholar
  23. 23.
    Dyukova, V.I., Shilova, N.V., Galanina, O.E., Rubina, A.Yu., and Bovin, N.V., Biochim. Biophys. Acta, 2006, vol. 1760, p. 603.PubMedGoogle Scholar
  24. 24.
    Gershon, D., Nature, 2002, vol. 416, pp. 885–891.PubMedCrossRefGoogle Scholar
  25. 25.
    Fodor, S.P., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., and Adams, C.L., Nature, 1993, vol. 364, pp. 555–556.PubMedCrossRefGoogle Scholar
  26. 26.
    MacBeath, G. and Schreiber, S.L., Science, 2000, vol. 289, pp. 1760–1763.PubMedGoogle Scholar
  27. 27.
    Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J., and Kettman, J.R., Jr, Clin. Chem., 1997, vol. 43, pp. 1749–1756.PubMedGoogle Scholar
  28. 28.
    Battersby, B.J., Bryant, D., Meutermans, W., Matthews, D., Smythe, M.L., and Trau, M., J. Am. Chem. Soc., 2000, vol. 122, pp. 2138–2139.CrossRefGoogle Scholar
  29. 29.
    Xu, H., Sha, M.Y., Wong, E.Y., Uphoff, J., Xu, Y., Treadway, J.A., Truong, A., O’Brien, E., Asquith, S., Stubbins, M., Spurr, N.K., Lai, E.H., and Mahoney, W., Nucleic Acid Res., 2003, vol. 31, p. e43.PubMedCrossRefGoogle Scholar
  30. 30.
    Han, M., Gao, X., Su, J.Z., and Nie, S., Nat. Biotechnol., 2001, vol. 19, pp. 631–635.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao, X.W., Liu, Z.B., Yang, H., Nagai, K., Zhao, Y.H., and Gu, Z.Z., Chem. Mater., 2006, vol. 18, pp. 2443–2449.CrossRefGoogle Scholar
  32. 32.
    Cunin, F., Schmedake, T.A., Link, J.R., Li, Y.Y., Koh, J., Bhatia, S.N., and Sailor, M.J., Nat. Mater., 2002, vol. 1, pp. 39–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Su, X., Zhang, J., Sun, L., Koo, T.W., Chan, S., Sundararajan, N., Yamakawa, M., and Berlin, A.A., Nano Lett., 2005, vol. 5, pp. 49–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Fenniri, H., Chun, S., Ding, L., Zyrianov, Y., and Hallenga, K., J. Am. Chem. Soc., 2003, vol. 125, pp. 10546–10560.PubMedCrossRefGoogle Scholar
  35. 35.
    Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., and Natan, M.J., Science, 2001, vol. 294, pp. 137–141.PubMedCrossRefGoogle Scholar
  36. 36.
    Sha, M.Y., Walton, I.D., Norton, S.M., Taylor, M., Yamanaka, M., Natan, M.J., Xu, C., Drmanac, S., Huang, S., Borcherding, A., Drmanac, R., and Penn, S.G., Anal. Bioanal. Chem., 2006, vol. 384, pp. 658–666.PubMedCrossRefGoogle Scholar
  37. 37.
    Evans, M., Sewter, C., and Hill, E., Assay Drug Dev. Technol., 2003, vol. 1, pp. 199–207.PubMedGoogle Scholar
  38. 38.
    Zhi, Z.L., Morita, Y., Hasan, Q., and Tamiya, E., Anal. Chem., 2003, vol. 75, pp. 4125–4131.PubMedCrossRefGoogle Scholar
  39. 39.
    Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., and Demeester, J., Nat. Mater., 2003, vol. 2, pp. 169–173.PubMedCrossRefGoogle Scholar
  40. 40.
    Moran, E.J., Sarshar, S., Cargill, J.F., Shahbaz, M.M., Lio, A., Mjalli, A.M.M., and Armstrong, R.W., J. Am. Chem. Soc., 1995, vol. 117, pp. 10787–10788.CrossRefGoogle Scholar
  41. 41.
    Nicolaou, K.C., Xiao, X.Y., Parandoosh, Z., Senyei, A., and Nova, M.P., Angew. Chem., Int. Ed. Engl., 1995, vol. 34, pp. 2289–2291.CrossRefGoogle Scholar
  42. 42.
    McHugh, T.M., Miner, R.C., Logan, R.H., and Stites, D.P., J. Clin. Microbiol., 1988, vol. 26, pp. 1957–1961.PubMedGoogle Scholar
  43. 43.
    Vaino, A.R. and Janda, K.D., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 7692–7696.PubMedCrossRefGoogle Scholar
  44. 44.
    Kader, H.A., Tchernev, V.T., Satyaraj, E., Lejnine, S., Kotler, G., Kingsmore, S.F., and Patel, D.D., Am. J. Gastroenterol., 2005, vol. 100, pp. 414–423.PubMedCrossRefGoogle Scholar
  45. 45.
    Hall, D.A., Ptacek, J., and Snyder, M., Mech. Ageing. Dev., 2007, vol. 128, pp. 161–167.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., and Snyder, M., Science, 2001, vol. 293, pp. 2101–2105.PubMedCrossRefGoogle Scholar
  47. 47.
    McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13555–13560.PubMedCrossRefGoogle Scholar
  48. 48.
    Ramachandran, N., Raphael, J.V., Hainsworth, E., Demirkan, G., Fuentes, M.G., Rolfs, A., Hu, Y., and LaBaer, J., Nat. Methods, 2008, vol. 5, pp. 535–538.PubMedCrossRefGoogle Scholar
  49. 49.
    Situma, C., Hashimoto, M., and Soper, S.A., Biomol. Eng., 2006, vol. 23, pp. 213–231.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., and Mrksich, M., Science, 2002, vol. 295, pp. 1702–1705.PubMedCrossRefGoogle Scholar
  51. 51.
    Yan, J., Estevez, M.J., Smith, J.E., Wang, K., He, X., Wang, L., and Tan, W., Nanotoday, 2007, vol. 2, no. 3, pp. 44–50.Google Scholar
  52. 52.
    Bruchez, M.., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science, 1998, vol. 281, pp. 2013–2016.PubMedCrossRefGoogle Scholar
  53. 53.
    Chan, W.C. and Nie, S., Science, 1998, vol. 281, pp. 2016–2018.PubMedCrossRefGoogle Scholar
  54. 54.
    Oleinikov, V.A., Sukhanova, A.V., and Nabiev, I.R., Ross. Nanotekhnol., 2007, vol. 2, nos. 1–2, pp. 160–173.Google Scholar
  55. 55.
    Nabiev, I., Sukhanova, A., Artemyev, M., and Oleinikov, V., in Colloidal Nanoparticles in Biotechnology, Elissari, A., Ed., London: Wiley, 2008, pp. 133–168.CrossRefGoogle Scholar
  56. 56.
    True, L.D. and Gao, X., J. Mol. Diagn., 2007, vol. 9, pp. 7–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Geho, D., Lahar, N., Gurnani, P., Huebschman, M., Herrmann, P., Espina, V., Shi, A., Wulfkuhle, J., Garner, H., and Petricoin, E., 3rd, Liotta, L.A., and Rosenblatt, K.P., Bioconjug. Chem., 2005, vol. 16, pp. 559–566.PubMedCrossRefGoogle Scholar
  58. 58.
    Rousserie, G., Sukhanova, A., Even-Desrumeaux, K., Fleury, F., Chames, P., Baty, D., Oleinikov, V., Pluot, M., Cohen, J.H.M., and Nabiev, I., Crit. Rev. Oncol./Hematol., 2010, vol. 74, pp. 1–15.CrossRefGoogle Scholar
  59. 59.
    Alivisatos, A.P., Science, 1996, vol. 271, pp. 933–937.CrossRefGoogle Scholar
  60. 60.
    Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., J. Phys. Chem. B, 1997, vol. 101, pp. 9463–9475.CrossRefGoogle Scholar
  61. 61.
    Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, pp. 8706–8715.CrossRefGoogle Scholar
  62. 62.
    Sukhanova, A., Venteo, L., Devy, J., Artemyev, M., Oleinikov, V., Pluot, M., and Nabiev, I., Lab. Invest./Brief Meth., 2002, vol. 82, no. 9, pp. 1259–1261.Google Scholar
  63. 63.
    Leatherdale, C.A., Woo, W.K., Mikulec, F.V., and Bawendi, M.G., J. Phys. Chem. B, 2002, vol. 106, pp. 7619–7622.CrossRefGoogle Scholar
  64. 64.
    Zhong, X., Feng, Y., Knoll, W., and Han, M., J. Am. Chem. Soc., 2003, vol. 125, pp. 13559–13563.PubMedCrossRefGoogle Scholar
  65. 65.
    Azzazy, H.M.E., Mansour, M.M.H., and Kazmierczak, S.C., Clin. Biochem., 2007, vol. 40, pp. 917–927.PubMedCrossRefGoogle Scholar
  66. 66.
    Williams, Y., Sukhanova, A., Nowostawska, M., Davies, A.M., Mitchel, S., Oleinikov, V., Gun’ko, Y., Nabiev, I., Kelleher, D., and Volkov, Y., Small, 2009, vol. 5, no. 22, pp. 2581–2588.PubMedCrossRefGoogle Scholar
  67. 67.
    Mahmoud, W., Sukhanova, A., Oleinikov, V., Rakovich, Y., Donegan, J.F., Pluot, M., Cohen, J.H.M., Volkov, Y., and Nabiev, I., Proteomics, 2010, vol. 10, pp. 700–716.PubMedCrossRefGoogle Scholar
  68. 68.
    Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Science, 2005, vol. 307, no. 5709, pp. 538–544.PubMedCrossRefGoogle Scholar
  69. 69.
    Haugland, R.P., The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, San Diego: Invitrogen Corp., 2005.Google Scholar
  70. 70.
    Tavares, A.J., Chong, L., Petryayeva, E., Algar, R., and Krull, U.J., Anal. Bioanal. Chem., 2010, DOI: 10.1007/s00216-010-4010-3, Publ. online July 25, 2010.Google Scholar
  71. 71.
    Karlin-Neumann, G., Sedova, M., Falkowski, M., Wang, Z., Lin, S., and Jain, M., Methods Mol. Biol., 2007, vol. 374, pp. 239–251.PubMedGoogle Scholar
  72. 72.
    Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., Klinov, D., Pluot, M., Cohen, J.H.M., and Nabiev, I., Anal. Biochem., 2004, vol. 324, no. 1, pp. 60–67.PubMedCrossRefGoogle Scholar
  73. 73.
    Hohng, S. and Ha, T., Chemphyschem, 2005, vol. 6, pp. 956–960.PubMedCrossRefGoogle Scholar
  74. 74.
    Pathak, S., Davidson, M.C., and Silva, G.A., Nano Lett., 2007, vol. 7, pp. 1839–1845.PubMedCrossRefGoogle Scholar
  75. 75.
    Shingyoji, M., Gerion, D., Pinkel, D., Gray, J.W., and Chen, F., Talanta, 2005, vol. 67, pp. 472–478.PubMedCrossRefGoogle Scholar
  76. 76.
    Finkel, N.H., Lou, X.H., Wang, C.Y., and He, L., Anal. Chem., 2004, vol. 76, p. 352.CrossRefGoogle Scholar
  77. 77.
    Braeckmans, K., De Smedt, S.C., Leblans, M., Pauwels, R., and Demeester, J., Nat. Rev. Drug. Discovery, 2002, vol. 1, pp. 447–456.CrossRefGoogle Scholar
  78. 78.
    Fortina, P., Kricka, L.J., Surrey, S., and Grodzinski, P., Trends Biotechnol., 2005, vol. 23, pp. 168–173.PubMedCrossRefGoogle Scholar
  79. 79.
    Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., and Demeester, J., Mod. Drug Discovery, 2003, vol. 6, pp. 28–32.Google Scholar
  80. 80.
    Fan, J.B., Chee, M.S., and Gunderson, K.L., Nat. Rev. Genet., 2006, vol. 7, pp. 632–644.PubMedCrossRefGoogle Scholar
  81. 81.
    Meza, M.B., Drug Discovery Today, 2000, vol. 5, Suppl. 1, pp. 38–41.CrossRefGoogle Scholar
  82. 82.
    Nolan, J.P. and Sklar, L.A., Trends Biotechnol., 2002, vol. 20, pp. 9–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Service, R.F., Science, 1995, vol. 270, p. 577.CrossRefGoogle Scholar
  84. 84.
    Pregibon, D.C., Toner, M., and Doyle, P.S., Science, 2007, vol. 315, pp. 1393–1396.PubMedCrossRefGoogle Scholar
  85. 85.
    Vignali, D.A., J. Immunol. Methods, 2000, vol. 243, pp. 243–255.PubMedCrossRefGoogle Scholar
  86. 86.
    Kellar, K.L. and Iannone, M.A., Exp. Hematol., 2002, vol. 30, pp. 1227–1237.PubMedCrossRefGoogle Scholar
  87. 87.
    Kellar, K.L. and Douglass, J.P., J. Immunol. Methods, 2003, vol. 279, pp. 277–285.PubMedCrossRefGoogle Scholar
  88. 88.
    Lukacs, Z., Dietrich, A., Ganschow, R., Kohlschutter, A., and Kruithof, R., Clin. Chem. Lab. Med., 2005, vol. 43, pp. 141–145.PubMedCrossRefGoogle Scholar
  89. 89.
    Hurley, J.D., Engle, L.J., Davis, J.T., Welsh, A.M., and Landers, J.E., Nucleic Acids Res., 2004, vol. 32.Google Scholar
  90. 90.
    Luo, Y., Curr. Opin. Mol. Ther., 2005, vol. 7, pp. 251–255.PubMedGoogle Scholar
  91. 91.
    Whitehead, G.S., Walker, J.K.L., Berman, K.G., Foster, W.M., and Schwartz, D.A., Am. J. Physiol. Lung. Cell. Mol. Physiol., 2003, vol. 285, pp. L32–L42.PubMedGoogle Scholar
  92. 92.
    Yan, X., Zhong, W., Tang, A., Schielke, E.G., Hang, W., and Nolan, J.P., Anal. Chem., 2005, vol. 77, pp. 7673–7678.PubMedCrossRefGoogle Scholar
  93. 93.
    McBride, M.T., Gammon, S., Pitesky, M., O’Brien, T.W., Smith, T., Aldrich, J., Langlois, R.G., Colston, B., and Venkateswaran, K.S., Anal. Chem., 2003, vol. 75, pp. 1924–1930.PubMedCrossRefGoogle Scholar
  94. 94.
    Morgan, E., Varro, R., Sepulveda, H., Ember, J.A., Apgar, J., Wilson, J., Lowe, L., Chen, R., Shivraj, L., Agadir, A., Campos, R., Ernst, D., and Gaur, A., Clin. Immunol., 2004, vol. 110, pp. 252–266.PubMedCrossRefGoogle Scholar
  95. 95.
    Tarnok, A., Hambsch, J., Chen, R., and Varro, R., Clin. Chem., 2003, vol. 49, pp. 1000–1002.PubMedCrossRefGoogle Scholar
  96. 96.
    Robinson, W.H., DiGennaro, C., Hueber, W., Haab, B.B., Kamachi, M., Dean, E.J., Fournel, S., Fong, D., Genovese, M.C., de Vegvar, H.E., Skriner, K., Hirschberg, D.L., Morris, R.I., Muller, S., Pruijn, G.J., van Venrooij, W.J., Smolen, J.S., Drown, P.O., Steinman, L., and Utz, P.J., Nat. Med., 2002, vol. 8, pp. 295–301.PubMedCrossRefGoogle Scholar
  97. 97.
    Stsiapura, V., Sukhanova, A., Artemyev, M., Pluot, M., Cohen, J.H.M., Baranov, A., Oleinikov, V., and Nabiev, I., Anal. Biochem., 2004, vol. 342, no. 2, pp. 257–265.CrossRefGoogle Scholar
  98. 98.
    Generalova, A.N., Sizova, S.V., Gontsova, M.S., Baranov, A.V., Maslov, V.G., Artem’ev, M.V., Klinov, D.V., Mochalov, K.E., Zubov, V.P., and Oleinikov, V.A., Ross. Nanotekhnol., 2007, vol. 2, nos. 7–8, pp. 144–154.Google Scholar
  99. 99.
    Generalova, A.N., Sizova, S.V., Oleinikov, V.A., Zubov, V.P., Artemyev, M., Spernath, L., Kamyshny, A., and Magdassi, S., Colloids and Surfaces A. Physicochem. Engineer. Asp., 2009, vol. 342, pp. 59–64.CrossRefGoogle Scholar
  100. 100.
    Sheng, W., Kim, S., Lee, J., Kim, S.W., Jensen, K., and Bawendi, M.G., Langmuir, 2006, vol. 22, pp. 3782–3790.PubMedCrossRefGoogle Scholar
  101. 101.
    Joumaa, N., Lansalot, M., Thretz, A., Elaissari, A., Sukhanova, A., Artemyev, M., Nabiev, I., and Cohen, J.H.M., Langmuir, 2006, vol. 22, pp. 1810–1816.PubMedCrossRefGoogle Scholar
  102. 102.
    Susha, A.S., Caruso, F., Rogach, A.L., Sukhorukov, G.B., Kornowski, A., Mohwald, H., Giersig, M., Eychmuller, A., and Weller, H., Colloids Surfaces A. Physicochem. Engineer. Asp., 2000, vol. 163, pp. 39–44.CrossRefGoogle Scholar
  103. 103.
    Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Mohwald, H., Eychmuller, A., and Weller, H., Adv. Mater., 2000, vol. 12, no. 5, pp. 333–337.CrossRefGoogle Scholar
  104. 104.
    Wang, D., Rogach, A.L., and Caruso, F., Nano Lett., 2002, vol. 2, pp. 857–861.CrossRefGoogle Scholar
  105. 105.
    Gaponik, N., Radtchenko, I.L., Sukhorukov, G.B., Weller, H., and Rogach, A.L., Adv. Mater., 2002, vol. 14, pp. 879–882.CrossRefGoogle Scholar
  106. 106.
    Ma, Q., Wang, X., Li, Y., Shi, Y., and Su, X., Talanta, 2007, vol. 72, pp. 1446–1452.PubMedCrossRefGoogle Scholar
  107. 107.
    Gaponik, N., Radtchenko, I.L., Gerstenberger, M.R., Fedutik, Y.A., Sukhorukov, G.B., and Rogach, A.L., Nano Lett., 2003, vol. 3, pp. 369–372.CrossRefGoogle Scholar
  108. 108.
    Sukhanova, A., Susha, A.S., Bek, A., Mayilo, S., Rogach, A.L., Feldmann, J., Oleinikov, V., Reveil, B., Donvito, B., Cohen, J.H.M., and Nabiev, I., Nano Lett., 2007, vol. 7, no. 8, pp. 2322–2327.PubMedCrossRefGoogle Scholar
  109. 109.
    Gao, X.H. and Nie, S.M., Anal. Chem., 2004, vol. 76, pp. 2406–2410.PubMedCrossRefGoogle Scholar
  110. 110.
    Eastman, P.S., Ruan, W., Doctolero, M., Nuttall, R., de Feo, G., Park, J.S., Chu, J.S., Cooke, P., Gray, J.W., Li, S., and Chen, F.F., Nano Lett., 2006, vol. 6, pp. 1059–1064.PubMedCrossRefGoogle Scholar
  111. 111.
    Schwartz, D.E., Gong, P., and Shepard, K.L., Biosens. Bioelectron., 2008, vol. 24, pp. 383–390.PubMedCrossRefGoogle Scholar
  112. 112.
    Schuler, B. and Eaton, W.A., Curr. Opin. Struct. Biol., 2008, vol. 18, pp. 16–26.PubMedCrossRefGoogle Scholar
  113. 113.
    Gertler, A., Biener, E., Ramanujan, K.V., Djiane, J., and Herman, B., J. Dairy Res., 2005, vol. 72, p. 9.CrossRefGoogle Scholar
  114. 114.
    Hallworth, R., Currall, B., Nichols, M.G., Wu, X., and Zuo, J., Brain Res., 2006, vol. 1091, pp. 122–131.PubMedCrossRefGoogle Scholar
  115. 115.
    Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., and Mauro, J.M., Nat. Mater., 2003, vol. 2, pp. 630–638.PubMedCrossRefGoogle Scholar
  116. 116.
    Wargnier, R., Baranov, A., Maslov, V., Stsiapura, V., Sukhanova, A., Pluot, M., and Nabiev, I., Nano Lett., 2004, vol. 4, pp. 451–457.CrossRefGoogle Scholar
  117. 117.
    Sukhanova, A., Baranov, A.V., Perova, T., Cohen, J.H.M., and Nabiev, I., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, pp. 2048–2052.CrossRefGoogle Scholar
  118. 118.
    Sukhanova, A., Venteo, L., Cohen, J.H.M., Pluot, M., and Nabiev, I., Ann. Acad. Pharm. Franc., 2006, vol. 64, pp. 125–134.Google Scholar
  119. 119.
    Sukhanova, A. and Nabiev, I., Expert. Opin. Med. Diagn., 2008, vol. 2, pp. 429–447.CrossRefGoogle Scholar
  120. 120.
    Nabiev, I., Mitchell, S., Davies, A., Willyams, Y., Kelleher, D., Moore, R., Gin’ko, Y.K., Byrne, S., Rakovich, Y.P., Donegan, J.F., Sukhanova, A., Conroy, J., Cottell, D., Gaponik, N., Rogach, A., and Volkov, Y., Nano Lett., 2007, vol. 7, pp. 3452–3461.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations