Russian Journal of Bioorganic Chemistry

, Volume 36, Issue 4, pp 446–455 | Cite as

Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes

  • T. V. Pyrkov
  • I. V. Ozerov
  • E. D. Balitskaya
  • R. G. Efremov


Knowledge of the spatial structure of complexes formed by cellular proteins and membrane receptors with their respective ligands is an important step towards understanding the mechanisms of their functioning. Rational drug design and the search for new therapeutically active compounds also require structural information on the interaction of prototypic drugs with the target protein. The present review briefly describes the main computational methods of molecular docking that are used to predict the conformation of a ligand bound to the active center of a protein. Approaches enabling an increase of the precision and efficiency of the currently used docking algorithms are exemplified by the recent projects of the Laboratory of Biomolecular Modeling of IBCh RAS. Special attention is paid to hydrophilic and hydrophobic interactions, as well as to the stacking phenomena that account for the molecular recognition of specific ligand fragments. These types of contacts are often inadequately described by the algorithms of the estimation of the intermolecular interaction energy of the existing docking programs (scoring functions), this ultimately leading to erroneous predictions of the three-dimensional structure of complexes. Therefore, a thorough consideration of these interactions is one of the most important tasks of molecular modeling.

Key words

docking scoring function hydrogen bonds hydrophobic interactions stacking 



scoring function


molecular hydrophobic potential






the database of three-dimensional protein structures (Protein Data Bank)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bursulaya, B.D., Totrov, M., Abagyan, R., and Brooks, C.L., J. Comput. Aided Mol. Des., 2003, vol. 17, pp. 755–763.CrossRefPubMedGoogle Scholar
  2. 2.
    Schulz-Gasch, T. and Stahl, M., J. Mol. Model., 2003, vol. 9, pp. 47–57.PubMedGoogle Scholar
  3. 3.
    Ferrara, P., Gohlke, H., Price, D.J., Klebe, G., and Brooks, C.L., J. Med. Chem., 2004, vol. 47, pp. 3032–3047.CrossRefPubMedGoogle Scholar
  4. 4.
    Kellenberger, E., Rodrigo, J., Muller, P., and Rognan, D., PROTEINS, 2004, vol. 57, pp. 225–242.CrossRefPubMedGoogle Scholar
  5. 5.
    Kontoyianni, M., McClellan, L.M., and Sokol, G.S., J. Med. Chem., 2004, vol. 47, pp. 558–565.CrossRefPubMedGoogle Scholar
  6. 6.
    Perola, E., Walters, W.P., and Charifson, P.S., PROTEINS, 2004, vol. 56, pp. 235–249.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang, R., Lu, Y., Fang, X., and Wang, S., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 2114–2125.PubMedGoogle Scholar
  8. 8.
    Zhou, Z., Felts, A.K., Friesner, R.A., and Levy, R.M., J. Chem. Inf. Model., 2007, vol. 47, pp. 1599–1608.CrossRefPubMedGoogle Scholar
  9. 9.
    Cross, J.B., Thompson, D.C., Rai, B.K., Baber, J.C., Fan, K.Y., Hu, Y., and Humblet, C., J. Chem. Inf. Model., 2009, vol. 49, pp. 1455–1474.CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R., J. Chem. Inf. Model., 2009, vol. 49, pp. 1079–1093.CrossRefPubMedGoogle Scholar
  11. 11.
    Betts, M.J. and Sternberg, M.J., Protein Eng., 1999, vol. 12, pp. 271–283.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhong, H., Tran, L.M., and Stang, J.L., J. Mol. Graphics Modell., 2009, vol. 28, pp. 558–575.CrossRefGoogle Scholar
  13. 13.
    Kokh, D.B. and Wenzel, W., J. Med. Chem., 2008, vol. 51, pp. 5919–5931.CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrara, P., Curioni, A., Vangrevelinghe, E., Meyer, T., Mordasini, T., Andreoni, W., Acklin, P., and Jacoby, E., J. Chem. Inf. Model., 2006, vol. 46, pp. 254–263.CrossRefPubMedGoogle Scholar
  15. 15.
    Thomas, M.P., McInnes, C., and Fischer, P.M., J. Med. Chem., 2006, vol. 49, pp. 92–104.CrossRefPubMedGoogle Scholar
  16. 16.
    Jansen, J.M. and Martin, E.J., Curr. Opin. Chem. Biol., 2004, vol. 8, pp. 359–364.CrossRefPubMedGoogle Scholar
  17. 17.
    Morley, D.S. and Afshar, M., J. Comput. Aided Mol. Des., 2004, vol. 18, pp. 189–208.CrossRefPubMedGoogle Scholar
  18. 18.
    Park, M.S., Dessal, A.L., Smrcka, A.V.., and Stern, H.A., J. Chem. Inf. Model., 2009, vol. 49, pp. 437–443.CrossRefPubMedGoogle Scholar
  19. 19.
    Hevener, K.E., Zhao, W., Ball, D.M., Babaoglu, K., Qi, J., White, S.W., and Lee, R.E., J. Chem. Inf. Model., 2009, vol. 49, pp. 444–460.CrossRefPubMedGoogle Scholar
  20. 20.
    Deng, W. and Verlinde, C.L.M.J., J. Chem. Inf. Model., 2008, vol. 48, pp. 2010–2020.CrossRefPubMedGoogle Scholar
  21. 21.
    Mao, L., Wang, Y., Liu, Y., and Hu, X., J. Mol. Biol., 2004, vol. 336, pp. 787–807.CrossRefPubMedGoogle Scholar
  22. 22.
    Saito, M., Go, M., and Shirai, T., Protein Eng. Des. Sel., 2006, vol. 19, pp. 67–75.CrossRefPubMedGoogle Scholar
  23. 23.
    Rognan, D., Lauemoller, S.L., Holm, A., Buus, S., and Tschinke, V., J. Med. Chem., 1999, vol. 42, pp. 4650–4658.CrossRefPubMedGoogle Scholar
  24. 24.
    Kitchen, D.B., Decornez, H., Furr, J.R., and Bajorath, J., Nat. Rev. Drug. Discov, 2004, vol. 3, pp. 935–949.CrossRefPubMedGoogle Scholar
  25. 25.
    Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., and Corbeil, C.R., Br. J. Pharmacol., 2008, vol. 153.Google Scholar
  26. 26.
    Tuccinardi, T., Comb. Chem. High Throughput Screen, 2009, vol. 12, pp. 303–314.CrossRefPubMedGoogle Scholar
  27. 27.
    Zoete, V., Grosdidier, A., and Michielin, O., J. Cell. Mol. Med., 2009, vol. 13, pp. 238–248.CrossRefPubMedGoogle Scholar
  28. 28.
    Ewing, T.J., Makino, S., and Skillman, G.A., J. Comput. Aided Mol. Des., 2001, vol. 15, pp. 411–428.CrossRefPubMedGoogle Scholar
  29. 29.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., and Mee, R.P., J. Comput. Aided Mol. Des., 1997, vol. 11, pp. 425–445.CrossRefPubMedGoogle Scholar
  30. 30.
    Muegge, I., J. Med. Chem., 2006, vol. 49, pp. 5895–5902.CrossRefPubMedGoogle Scholar
  31. 31.
    Mooij, W.T.M. and Verdonk, M.L., PROTEINS, 2005, vol. 61, pp. 272–287.CrossRefPubMedGoogle Scholar
  32. 32.
    Amini, A., Shrimpton, P.J., Muggleton, S.H., and Sternberg, M.J., PROTEINS, 2007, vol. 69, pp. 823–831.CrossRefPubMedGoogle Scholar
  33. 33.
    Catana, C. and Stouten, P.F.W., J. Chem. Inf. Model., 2007, vol. 47, pp. 85–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Laederach, A. and Reilly, P.J., PROTEINS, 2005, vol. 60, pp. 591–597.CrossRefPubMedGoogle Scholar
  35. 35.
    Kerzmann, A., Fuhrmann, J., Kohlbacher, O., and Neumann, D., J. Chem. Inf. Model., 2008, vol. 48, pp. 1616–1625.CrossRefPubMedGoogle Scholar
  36. 36.
    Pyrkov, T.V., Kosinsky, Y.A., Arseniev, A.S., Priestle, J.P., Jacoby, E., and Efremov, R.G., PROTEINS, 2007, vol. 66, pp. 388–398.CrossRefPubMedGoogle Scholar
  37. 37.
    Pyrkov, T.V. and Efremov, R.G., Int. J. Mol. Sci., 2007, vol. 8, pp. 1083–1094.CrossRefGoogle Scholar
  38. 38.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acid. Res., 2000, vol. 28, pp. 235–242.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, R., Fang, X., Lu, Y., Yang, C.Y., and Wang, S., J. Med. Chem., 2005, vol. 48, pp. 4111–4119.CrossRefPubMedGoogle Scholar
  40. 40.
    Whittaker, M., Floyd, C.D., Brown, P., and Gearing, A.J.H., Chem. Rev., 1999, vol. 99, pp. 2735–2776.CrossRefPubMedGoogle Scholar
  41. 41.
    Pyrkov, T.V., Pyrkova, D.V., Balitskaya, E.D., and Efremov, R.G., Acta Naturae, 2009, vol. 1, pp. 124–127.Google Scholar
  42. 42.
    Efremov, R.G., Chugunov, A.O., Pyrkov, T.V., Priestle, J.P., Arseniev, A.S., and Jacoby, E., Curr. Med. Chem., 2007, vol. 14, pp. 393–415.CrossRefPubMedGoogle Scholar
  43. 43.
    Gaillard, P., Carrupt, P.A., Testa, B., and Boudon, A., J. Comput. Aided. Mol. Des., 1994, vol. 8, pp. 83–96.CrossRefPubMedGoogle Scholar
  44. 44.
    Testa, B., Carrupt, P.A., Gaillard, P., Billois, F., and Weber, P., Pharm. Res., 1996, vol. 13, pp. 335–343.CrossRefPubMedGoogle Scholar
  45. 45.
    Denissiouk, K.A., Rantanen, V.V., and Johnson, M.S., PROTEINS, 2001, vol. 44, pp. 282–291.CrossRefGoogle Scholar
  46. 46.
    Cappello, V., Tramontano, A., and Kock, U., PROTEINS, 2002, vol. 47, pp. 106–115.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuttner, Y.Y., Sobolev, V., Raskind, A., and Edelman, M., PROTEINS, 2003, vol. 52, pp. 400–411.CrossRefPubMedGoogle Scholar
  48. 48.
    Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., and Robins, R.K., J. Chem. Inf. Comput. Sci., 1989, vol. 29, pp. 163–172.Google Scholar
  49. 49.
    Ghose, A.K., Viswanadhan, V.N., and Wendoloski, J.J., J. Phys. Chem., 1998, vol. 102, pp. 3762–3772.Google Scholar
  50. 50.
    Wang, R., Gao, I., and Lay, L., Perspect. Drug Discov. Des., 2000, vol. 19, pp. 47–66.CrossRefGoogle Scholar
  51. 51.
    Klopman, G., Li, J.-Y., Wang, S., and Dimayuga, M., J. Chem. Inf. Comput. Sci., 1994, vol. 34, pp. 752–781.Google Scholar
  52. 52.
    Meylan, W.M. and Howard, P.H., J. Pharm. Sci., 1995, vol. 84, pp. 83–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Heiden, W., Moeckel, G., and Brickmann, J., J. Comput. Aided. Mol. Des., 1993, vol. 7, pp. 503–514.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang, R., Luhua, L., and Shaomeng, W., J. Comp. Aided. Mol. Des., 2002, vol. 16, pp. 11–26.CrossRefGoogle Scholar
  55. 55.
    Meng, E.C., Kuntz, I.D., Abraham, D.J., and Kellogg, G.E., J. Comput. Aided. Mol. Des., 1994, vol. 8, pp. 299–306.CrossRefPubMedGoogle Scholar
  56. 56.
    Efremov, R.G. and Alix, A.J.P., J. Biomol. Struct. Dyn., 1993, vol. 11, pp. 483–507.PubMedGoogle Scholar
  57. 57.
    Bohm, H.J., J. Comput. Aided Mol. Des., 1994, vol. 8, pp. 243–256.CrossRefPubMedGoogle Scholar
  58. 58.
    Exner, T.E., Keil, M., and Brickmann, J., J. Comput. Chem., 2002, vol. 23, pp. 1176–1187.CrossRefPubMedGoogle Scholar
  59. 59.
    Pyrkov, T.V., Chugunov, A.O., Krylov, N.A., Nolde, D.E., and Efremov, R.G., Bioinformatics, 2009, vol. 25, pp. 1201–1202.CrossRefPubMedGoogle Scholar
  60. 60.
    Pyrkov, T.V., Priestle, J.P., Jacoby, E., and Efremov, R.G., SAR QSAR Environ. Res., 2008, vol. 19, pp. 91–99.CrossRefPubMedGoogle Scholar
  61. 61.
    Bree, F., Tayar, N., Van de Waterbeemd, H., Testa, B., and Tillement, J.P., J. Recept. Res., 1986, vol. 6, pp. 381–409.PubMedGoogle Scholar
  62. 62.
    Contreras, M.L., Wolfe, B.B., and Molinoff, P.B., J. Pharmacol. Exp. Ther., 1986, vol. 237, pp. 154–164.PubMedGoogle Scholar
  63. 63.
    Contreras, M.L., Wolfe, B.B., and Molinoff, P.B., J. Pharmacol. Exp. Ther., 1986, vol. 237, pp. 165–172.PubMedGoogle Scholar
  64. 64.
    Novoseletsky, V.N., Pyrkov, T.V., and Efremov, R.G., SAR QSAR Environ. Res. 2010, (in press).Google Scholar
  65. 65.
    Gotoh, O., Adv. Biophys., 1983, vol. 16, pp. 1–52.CrossRefPubMedGoogle Scholar
  66. 66.
    Sponer, J., Leszczynski, J., and Hobza, P., J. Biomol. Struct. Dyn., 1996, vol. 14, pp. 117–135.PubMedGoogle Scholar
  67. 67.
    Jorgensen, W.L. and Severance, D.L., J. Am. Chem. Soc., 1990, vol. 112, pp. 4768–4774.CrossRefGoogle Scholar
  68. 68.
    Waters, M.L., Curr. Opin. Chem. Biol., 2002, vol. 6, pp. 736–741.CrossRefPubMedGoogle Scholar
  69. 69.
    Meyer, E.A., Castellano, R.K., and Diederich, F., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, pp. 1210–1250.CrossRefGoogle Scholar
  70. 70.
    Tewari, A.K. and Dubey, R., Bioorg. Med. Chem., 2008, vol. 16, pp. 126–143.CrossRefPubMedGoogle Scholar
  71. 71.
    Traxler, P. and Furet, P., Pharmacol. Ther., 1999, vol. 82, pp. 195–206.CrossRefPubMedGoogle Scholar
  72. 72.
    Sigel, H. and Griesser, R., Chem. Soc. Rev., 2005, vol. 34, pp. 875–900.CrossRefPubMedGoogle Scholar
  73. 73.
    Deng, Z., Chuaqui, C., and Singh, J., J. Med. Chem., 2004, vol. 47, pp. 337–344.CrossRefPubMedGoogle Scholar
  74. 74.
    Chakrabarti, P. and Bhattacharyya, R., Prog. Biophys. Mol. Biol., 2007, vol. 95, pp. 83–137.CrossRefPubMedGoogle Scholar
  75. 75.
    Chelli, R., Gervasio, F.L., Procacci, P., and Schettino, V., J. Am. Chem. Soc., 2002, vol. 124, pp. 6133–6143.CrossRefPubMedGoogle Scholar
  76. 76.
    Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., and Tanabe, K., J. Am. Chem. Soc., 2001, vol. 124, pp. 104–112.CrossRefGoogle Scholar
  77. 77.
    Small, D., Zaitsev, V., Jung, Y., Rosokha, S.V., Head-Gordon, M., and Kochi, J.K., J. Am. Chem. Soc., 2004, vol. 126, pp. 13850–13858.CrossRefPubMedGoogle Scholar
  78. 78.
    Sato, T., Tsuneda, T., and Hirao, K., J. Chem. Phys., 2005, vol. 123, p. 104307.CrossRefPubMedGoogle Scholar
  79. 79.
    Malathy, SonyS.M. and Ponnuswamy, M.N., Crystal Growth Design, 2006, vol. 6, pp. 736–742.CrossRefGoogle Scholar
  80. 80.
    Stroganov, O.V., Novikov, F.N., Stroylov, V.S., Kulkov, V., and Chilov, G.G., J. Chem. Inf. Model., 2008, vol. 48, pp. 2371–2385.CrossRefPubMedGoogle Scholar
  81. 81.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R.D., J. Mol. Biol., 1997, vol. 267, pp. 727–748.CrossRefPubMedGoogle Scholar
  82. 82.
    Renner, S., Derksen, S., Radestock, S., and Morchen, F., J. Chem. Inf. Model., 2008, vol. 48, pp. 319–332.CrossRefPubMedGoogle Scholar
  83. 83.
    Blomberg, D., Fex, T., Xue, Y., Brickmann, K., and Kihlberg, J., Org. Biomol. Chem., 2007, vol. 5, no. (16), pp. 2599–2605.CrossRefPubMedGoogle Scholar
  84. 84.
    Pyrkov, T.V., Kosinsky, Y.A., Arseniev, A.S., Priestle, J.P., Jacoby, E., and Efremov, R.G., J. Chem. Inf. Model., 2007, vol. 47, pp. 1171–1181.CrossRefPubMedGoogle Scholar
  85. 85.
    Bindewald, E. and Skolnick, J., J. Comput. Chem., 2005, vol. 26, pp. 374–383.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • T. V. Pyrkov
    • 1
    • 2
  • I. V. Ozerov
    • 1
    • 3
  • E. D. Balitskaya
    • 1
    • 3
  • R. G. Efremov
    • 1
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
  2. 2.Moscow Physico-Technical Institute (State University)MoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations