Russian Journal of Bioorganic Chemistry

, Volume 35, Issue 6, pp 652–669 | Cite as

Synthesis and properties of chromophores of fluorescent proteins

  • P. E. Ivashkin
  • I. V. Yampolsky
  • K. A. Lukyanov
Review Article

Abstract

We describe the existing approaches to the synthesis of 5-arylidene-3,5-dihydro-4 H-imidazol-4-ones—model chromophores of fluorescent proteins and their nonnatural analogs. We discuss in detail the chemical (acid-base and redox reactions, cis-trans isomery, etc.) and spectral properties of the chromophores and the influence of substitutes and the environment. The study of synthetic chromophores allows for modeling of the photophysical characteristics of fluorescent proteins.

Key words

fluorescent protein chromoprotein chromophores imidazolone GFP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsien, R.Y., Annu. Rev. Biochem., 1998, vol. 67, pp. 509–544.CrossRefPubMedGoogle Scholar
  2. 2.
    Chudakov, D.M., Lukyanov, S., and Lukyanov, K.A., Trends Biotechnol., 2005, vol. 23, pp. 605–613.CrossRefPubMedGoogle Scholar
  3. 3.
    Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., Gene, 1992, vol. 111, pp. 229–233.CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson, F.H., Shimomura, O., Saiga, Y., Gershman, L.C., Reynolds, G.T., and Waters, J.R., J. Cell. Comp. Physiol., 1962, vol. 60, pp. 85–103.CrossRefGoogle Scholar
  5. 5.
    Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A., Nat. Biotechnol., 1999, vol. 17, pp. 969–973.CrossRefPubMedGoogle Scholar
  6. 6.
    Remington, S.J., Curr. Opin. Struct. Biol., 2006, vol. 16, pp. 714–721.CrossRefPubMedGoogle Scholar
  7. 7.
    Pakhomov, A.A. and Martynov, V.I., Chem. Biol., 2008, vol. 15, pp. 755–764.CrossRefPubMedGoogle Scholar
  8. 8.
    Wachter, R.M., Acc. Chem. Res., 2007, vol. 40, pp. 120–127.CrossRefPubMedGoogle Scholar
  9. 9.
    Mizuno, H., Mal, T.K., Tong, K.I., Ando, R., Furuta, T., Ikura, M., and Miyawaki, A., Mol. Cell., 2003, vol. 12, pp. 1051–1058.CrossRefPubMedGoogle Scholar
  10. 10.
    Shimomura, O., FEBS Lett., 1979, vol. 104, pp. 220–222.CrossRefGoogle Scholar
  11. 11.
    Niwa, H., Inouye, S., Hirano, T., Matsuno, T., Kojima, S., Kubota, M., Ohashi, M., and Tsuji, F.I., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13617–13622.CrossRefPubMedGoogle Scholar
  12. 12.
    Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J., Science, 1996, vol. 273, pp. 1392–1395.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang, F. and Moss, L.G., Jr. G.N.P, Nature Biotechnol., 1996, vol. 14, pp. 1246–1251.CrossRefGoogle Scholar
  14. 14.
    Lukyanov, K.A., Chudakov, D.M., Lukyanov, S., and Verkhusha, V.V., Nat. Rev. Mol. Cell. Biol., 2005, vol. 6, pp. 885–891.CrossRefPubMedGoogle Scholar
  15. 15.
    Andresen, M., Wahl, M.C., Stiel, A.C., Grater, F., Schafer, L.V., Trowitzsch, S., Weber, G., Eggeling, C., Grubmuller, H., Hell, S.W., and Jakobs, S., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 13070–13074.CrossRefPubMedGoogle Scholar
  16. 16.
    Greenbaum, L., Rothmann, C., Lavi, R., and Malik, Z., Biol. Chem., 2000, vol. 381, pp. 1251–1258.CrossRefPubMedGoogle Scholar
  17. 17.
    Bulina, M.E., Chudakov, D.M., Britanova, O.V., Yanushevich, Y.G., Staroverov, D.B., Chepurnykh, T.V., Merzlyak, E.M., Shkrob, M.A., Lukyanov, S., and Lukyanov, K.A., Nature Biotechnol., 2006, vol. 24, pp. 95–99.CrossRefGoogle Scholar
  18. 18.
    Devasia, G.M. and Shafi, M., Indian J. Chem., 1979, vol. 17B, pp. 526–527.Google Scholar
  19. 19.
    Devasia, G.M. and Shafi, M., Indian J. Chem., 1981, vol. 20B, pp. 657–660.Google Scholar
  20. 20.
    Kojima, S., Ohkawa, H., Hirano, T., Maki, S., Niwa, H., Ohashi, M., Inouye, S., and Tsuji, F.I., Tetrahedron Lett., 1998, vol. 39, pp. 5239–5242.CrossRefGoogle Scholar
  21. 21.
    Shafi, P.M., Curr. Sci., 1985, vol. 54, pp. 1231–1232.Google Scholar
  22. 22.
    Ekeley, J.B. and Ronzio, A.R., J. Am. Chem. Soc., 1935, vol. 57, pp. 1353–1356.CrossRefGoogle Scholar
  23. 23.
    Kidwai, A.R. and Devasia, G.M., J. Org. Chem., 1962, vol. 27, pp. 4527–4531.CrossRefGoogle Scholar
  24. 24.
    Kjaer, A., Acta Chem. Scand., 1953, vol. 7, pp. 1030–1035.CrossRefGoogle Scholar
  25. 25.
    Rao, Y.S. and Filler, R., Synthesis, 1975, pp. 749–764.Google Scholar
  26. 26.
    Tripathy, K.P. and Mukerjee, A.K., Synthesis, 1985, pp. 285–288.Google Scholar
  27. 27.
    Yampolsky, I.V., Remington, S.J., Martynov, V.I., Potapov, V.K., Lukyanov, S., and Lukyanov, K.A., Biochemistry, 2005, vol. 44, pp. 5788–5793.CrossRefPubMedGoogle Scholar
  28. 28.
    Oumouch, S., Bourotte, M., Schmitt, M., and Bourguignon, J.-J., Synthesis, 2005, pp. 25–27.Google Scholar
  29. 29.
    Henichart, J.P. and Bernier, J.L., Synthesis, 1980, pp. 311–312.Google Scholar
  30. 30.
    Yampolsky, I.V., Kislukhin, A.A., Amatov, T.T., Shcherbo, D., Potapov, V.K., Lukyanov, S., and Lukyanov, K.A., Bioorg. Chem., 2008, vol. 36, pp. 96–104.PubMedGoogle Scholar
  31. 31.
    He, X., Bell, A.F., and Tonge, P.J., Org. Lett., 2002, vol. 4, pp. 1523–1526.CrossRefPubMedGoogle Scholar
  32. 32. 33.
    He, X., Bell, A.F., and Tonge, P.J., J. Phys. Chem., B, 2002, vol. 106, pp. 6056–6066.CrossRefGoogle Scholar
  33. 34.
    Bell, A.F., He, X., Wachter, R.M., and Tonge, P.J., Biochemistry, 2000, vol. 39, pp. 4423–4431.CrossRefPubMedGoogle Scholar
  34. 35.
    He, X., Bell, A.F., and Tonge, P.J., FEBS Lett., 2003, vol. 549, pp. 35–38.CrossRefPubMedGoogle Scholar
  35. 36.
    Dong, J., Solntsev, K.M., and Tolbert, L.M., J. Am. Chem. Soc., 2006, vol. 128, pp. 12038–12039.CrossRefPubMedGoogle Scholar
  36. 37.
    Nifosi, R., Ferrari, A., Arcangeli, C., Tozzini, V., Pellegrini, V., and Beltram, F., J. Phys. Chem., B, 2003, vol. 107, pp. 1679–1684.CrossRefGoogle Scholar
  37. 38.
    Dong, J., Abulwerdi, F., Baldridge, A., Kowalik, J., Solntsev, K.M., and Tolbert, L.M., J. Am. Chem. Soc., 2008, vol. 130, pp. 14096–14098.CrossRefPubMedGoogle Scholar
  38. 39.
    Voliani, V., Bizzarri, R., Nifos, R., Abbruzzetti, S., Grandi, E., Viappiani, C., and Beltram, F., J. Phys. Chem. B, 2008, vol. 112, pp. 10714–10722.CrossRefPubMedGoogle Scholar
  39. 40.
    Hager, B., Schwarzinger, B., and Falk, H., Monatsh. Chem., 2006, vol. 137, pp. 163–168.CrossRefGoogle Scholar
  40. 41.
    Voityuk, A.A., Michel-Beyerle, M.E., and Rosch, N., Chem. Phys. Lett., 1997, vol. 272, pp. 162–167.CrossRefGoogle Scholar
  41. 42.
    Weber, W., Helms, V., McCammon, J.A., and Langhoff, P.W., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 6177–6182.CrossRefPubMedGoogle Scholar
  42. 43.
    Devasia, G.M. and Shafi, P.M., Indian J. Chem., B, 1986, vol. 25, pp. 204–206.Google Scholar
  43. 44.
    Kojima, S., Hirano, T., Niwa, H., Ohashi, M., Inouye, S., and Tsuji, F.I., Tetrahedron Lett., 1997, vol. 38, pp. 2875–2878.CrossRefGoogle Scholar
  44. 45.
    Mustafa, A. and Harhash, A.H.E., J. Org. Chem., 1956, vol. 21, pp. 575–576.CrossRefGoogle Scholar
  45. 46.
    Argyropoulos, N.G., Coutouli-Argyropoulou, E., and Siacavara, C., J. Heterocycl. Chem., 1990, vol. 27, pp. 2097–2100.CrossRefGoogle Scholar
  46. 47.
    Girgis, A.S., Zeitschrift fur Naturforschung, B, 2000, vol. 55, pp. 222–231.Google Scholar
  47. 48.
    El-Maghraby, M.A., El-Ela, A.A., Khalafalla, A.K., and El-Shami, E., J. Ind. Chem. Soc., 1985, vol. 62, p. 676.Google Scholar
  48. 49.
    Kidwai, M., Sapra, P., Bhushan, K.R., and Misra, P., Synthesis, 2001, vol. 10, pp. 1509–1512.CrossRefGoogle Scholar
  49. 50.
    Girges, M.M., El-Zahab, M.M.A., and Hanna, M.A., Collect. Czech. Chem. Commun., 1989, vol. 54, p. 1096.CrossRefGoogle Scholar
  50. 51.
    Badr, M.Z.A. and Mahgoub, S.A.E., S, Indian J. Chem., B, 1989, vol. 28, pp. 829–837.Google Scholar
  51. 52.
    Nienhaus, K., Nienhaus, G.U., Wiedenmann, J., and Nar, H., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 9156–9159.CrossRefPubMedGoogle Scholar
  52. 53.
    Hayashi, I., Mizuno, H., Tong, K.I., Furuta, T., Tanaka, F., Yoshimura, M., Miyawaki, A., and Ikura, M., J. Mol. Biol., 2007, vol. 372, pp. 918–926.CrossRefPubMedGoogle Scholar
  53. 54.
    Ward, W.W., Prentice, H.J., Roth, A.F., Cody, C.W., and Reeves, S.C., Photochem. Photobiol., 1982, vol. 35, pp. 803–808.CrossRefGoogle Scholar
  54. 55.
    Heim, R., Prasher, D.C., and Tsien, R.Y., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 12501–12504.CrossRefPubMedGoogle Scholar
  55. 56.
    Heim, R., Cubbitt, A.B., and Tsien, R.Y., Nature, 1995, vol. 373, pp. 663–664.CrossRefPubMedGoogle Scholar
  56. 57.
    Kneen, M., Farinas, J., Li, Y., and Verkman, A.S., Biophys. J., 1998, vol. 74, pp. 1591–1599.CrossRefPubMedGoogle Scholar
  57. 58.
    Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., Ormo, M., and Remington, S.J., Biochemistry, 1997, vol. 36, pp. 9759–9765.CrossRefPubMedGoogle Scholar
  58. 59.
    Voityuk, A.A., Michel-Beyerle, M.-E., and Rosch, N., Chem. Phys., 1998, vol. 231, pp. 13–25.CrossRefGoogle Scholar
  59. 60.
    Prüger, B. and Bach, T., Synthesis, 2007, vol. 7, pp. 1103–1106.Google Scholar
  60. 61.
    Dong, J., Solntsev, K.M., and Tolbert, L.M., J. Am. Chem. Soc., 2009, vol. 131, pp. 662–670.CrossRefPubMedGoogle Scholar
  61. 62.
    Chen, K.-Y., Cheng, Y.-M., Lai, C.-H., Hsu, C.-C., Ho, M.-L., Lee, G.-H., and Chou, P.-T., J. Am. Chem. Soc., 2007, vol. 129, pp. 4534–4535.CrossRefPubMedGoogle Scholar
  62. 63.
    Dong, J., Solntsev, K.M., Poizat, O., and Tolbert, L.M., J. Am. Chem. Soc., 2007, vol. 129, pp. 10084–10085.CrossRefPubMedGoogle Scholar
  63. 64.
    Follenius-Wund, A., Bourotte, M., Schmitt, M., Iyice, F., Lami, H., Bourguignon, J.-J., Haiech, J., and Pigault, C., Biophys. J., 2003, vol. 85, pp. 1839–1850.CrossRefPubMedGoogle Scholar
  64. 65.
    Wu, L. and Burgess, K., J. Am. Chem. Soc., 2008, vol. 130, pp. 4089–4096.CrossRefPubMedGoogle Scholar
  65. 66.
    Voityuk, A.A., Kummer, A.D., Michel-Beyerle, M.-E., and Rosch, N., Chem. Phys., 2001, vol. 269, pp. 83–91.CrossRefGoogle Scholar
  66. 67.
    McCapra, F., Razavi, Z., and Neary, A.P., J. Chem Soc., Chem. Commun., 1988, pp. 790–791.Google Scholar
  67. 68.
    Ward, W.W., Cody, C.W., Hart, R.C., and Cormier, M.J., Photochem. Photobiol., 1980, vol. 31, pp. 611–615.CrossRefGoogle Scholar
  68. 69.
    Kummer, A., Kompa, C., Lossau, H., Pollinger-Dammer, F., Michel-Beyerle, M.E., Silva, C.M., Bylina, E., Coleman, W., Yang, M., and Youvan, D., Chem. Phys., 1998, vol. 237, pp. 183–193.CrossRefGoogle Scholar
  69. 70.
    Lewis, F.D. and Yang, J.-S., J. Phys. Chem., 1996, vol. 100, pp. 14560–14568.CrossRefGoogle Scholar
  70. 71.
    Nielsen, S.B., Lapierre, A., Andersen, J.U., Pedersen, U.V., Tomita, S., and Andersen, L.H., Phys. Rev. Lett., 2001, vol. 87, p. 228102.CrossRefPubMedGoogle Scholar
  71. 72.
    Andersen, L.H., Bluhme, H., Boye, S., Jorgensen, T.J.D., Krogh, H., Nielsen, I.B., Nielsen, S.B., and Svendsen, A., Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 2617–2627.CrossRefGoogle Scholar
  72. 73.
    Wachter, R.M., Elsliger, M.A., Kallio, K., Hanson, G.T., and Remington, S.J., Structure, 1998, vol. 6, pp. 1267–1277.CrossRefPubMedGoogle Scholar
  73. 74.
    Yang, J.-S., Huang, G.-J., Liu, Y.-H., and Peng, S.-M., Chem. Commun., 2008, pp. 1344–1346.Google Scholar
  74. 75.
    Maddalo, S.L. and Zimmer, M., Photochem. Photobiol., 2006, vol. 82, pp. 367–372.CrossRefPubMedGoogle Scholar
  75. 76.
    Toniolo, A., Olsen, S., Manohar, L., and Martinez, T.J., Faraday Discuss., 2004, vol. 127, pp. 149–163.CrossRefPubMedGoogle Scholar
  76. 77.
    Mandal, D., Tahara, T., Webber, N.M., and Meech, S.R., Chem. Phys. Lett., 2002, vol. 358, pp. 495–501.CrossRefGoogle Scholar
  77. 78.
    Litvinenko, K.L., Webber, N.M., and Meech, S.R., J. Phys. Chem., A, 2003, vol. 107, pp. 2616–2623.CrossRefGoogle Scholar
  78. 79.
    Patterson, G.H. and Lippincott-Schwartz, J., Science, 2002, vol. 297, pp. 1873–1877.CrossRefPubMedGoogle Scholar
  79. 80.
    Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V., Fradkov, A.F., Lukyanov, S., and Lukyanov, K.A., Nature Biotechnol., 2006, vol. 24, pp. 461–465.CrossRefGoogle Scholar
  80. 81.
    Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., and Hofkens, J., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, p. 9511.Google Scholar
  81. 82.
    Haupts, U., Maiti, S., Schwille, P., and Webb, W.W., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13573–13578.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • P. E. Ivashkin
    • 1
  • I. V. Yampolsky
    • 1
  • K. A. Lukyanov
    • 1
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations