Russian Journal of Bioorganic Chemistry

, Volume 34, Issue 1, pp 37–42 | Cite as

Interaction of the synthetic immunomodulatory dipeptide bestim with murine macrophages and thymocytes

  • A. A. Kolobov
  • N. I. Kolodkin
  • Yu. A. Zolotarev
  • C. Tuthill
  • E. V. Navolotskaya
Article

Abstract

The tritium-labeled dipeptide bestim (γ-D-Glu-L-Trp) with a specific activity of 45 Ci/mmol was obtained by high-temperature solid-state catalytic isotope exchange. It was found that [3H]bestim binds with a high affinity to murine peritoneal macrophages (K d 2.1 ± 0.1 nM) and thymocytes (K d 3.1 ± 0.2 nM), as well as with plasma membranes isolated from these cells (K d 18.6 ± 0.2 and 16.7 ± 0.3 nM, respectively). The specific binding of [3H]bestim to macrophages and thymocytes was inhibited by the unlabeled dipeptide thymogen (L-Glu-L-Trp) (K i 0.9 ± 0.1 and 1.1 ± 0.1 nM, respectively). After treatment with trypsin, macrophages and thymocytes lost the ability to bind [3H]bestim. Bestim in the concentration range of 10−10 to 10−6 M reduced the adenylate cyclase activity in the membranes of murine macrophages and thymocytes.

Key words

adenylate cyclase immune system peptides receptors 

Abbreviations

ACTH

adrenocorticotropic hormone

PAM

phenacylamidomethyl

γ-D-Glu

the glutamic acid residue that forms the peptide bond through the γ-carboxyl group

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolobov, A. and Simbirtsev, A., Patent Application WO9933799, 1999.Google Scholar
  2. 2.
    Simbirtsev, A., Kolobov, A., Zabolotnych, N., Pigareva, N., Konusova, V., Kotov, A., Variouchina, E., Bokovanov, V., Vinogradova, T., Vasilieva, S., and Tuthill, C., Russ. J. Immunol, 2003, vol. 8, pp. 11–22.PubMedGoogle Scholar
  3. 3.
    Semina, O.I., Semenets, T.N., Zamulaeva, I.A., Selivanova, E.I., Malyutina, Yu.I., Saenko, A.S., and Deigin, V.I., Bull. Eksp. Biol. Med., 2006, vol. 141, pp. 250–253.CrossRefGoogle Scholar
  4. 4.
    Deigin, V.I., Semenets, T.N., Zamulaeva, I.A., Maliutina, Y.V., Selivanova, E.I., Saenko, A.S., and Semina, O.V., Int. Immunopharmacol., 2007, vol. 7, pp. 375–382.CrossRefPubMedGoogle Scholar
  5. 5.
    Dambaeva, S.I., Kim, K.F., Mazurov, D.V., and Deigin, V.I., Zh. Mikrobiol. Epidemiol. Immunobiol., 2002, vol. 6, pp. 55–59.PubMedGoogle Scholar
  6. 6.
    Tsvelev, Yu.V., Khavinson, V.Kh., D’yachuk, A.V., Gur’ev, A.V., and Seryi, S.V., Akush. Ginekol., 1992, no. 2, pp. 54–57.Google Scholar
  7. 7.
    Morozova, T.I., Khudzik, L.B., and Tikhomirova, L.A., Problemy Tuberkuleza, 1994, no. 2, pp. 40–42.Google Scholar
  8. 8.
    Yushchuk, N.D., Tseneva, G.Ya., Alenushkina, T.V., and Kulyashova, L.V., Zhurn. Mikrobiol. Epidemiol. Immunobiol., 1995, no. 3, pp. 106–108.Google Scholar
  9. 9.
    Smith, D.L., Cai, J., Zhu, S., Wei, W., Fukmoto, J., Sharma, S., Masood, R., and Gill, P.S., Int. J. Cancer, 2003, vol. 106, pp. 528–533.CrossRefPubMedGoogle Scholar
  10. 10.
    Demidov, S.V., Kostromin, A.P., Chernichenko, E.F., Kuibeda, V.V., and Borovok, M.I., Problemy Tuberkuleza, 1990, no. 10, pp. 63–65.Google Scholar
  11. 11.
    Demidov, S.V., Kostromin, A.P., Kuibeda, V.V., Chernaya, I.V., and Borovok, M.I., Ukr. Biokhim. Zh., 1991, vol. 63, pp. 104–106.PubMedGoogle Scholar
  12. 12.
    Boichenko, M.N. and Zhilina, I.L., Zh. Mikrobiol. Epidemiol. Immunobiol., 1983, no. 5, pp. 9–12.Google Scholar
  13. 13.
    Zhilina, I.L., Elkina, S.I., and Boichenko, M.N., Zh. Mikrobiol. Epidemiol. Immunobiol., 1984, no. 6, pp. 98–101.Google Scholar
  14. 14.
    Ueda, H., Yoshihara, Y., Misawa, H., Fukushima, N., Katada, T., Ui, M., Takagi, H., and Satoh, M., J. Biol. Chem., 1989, vol. 264, pp. 3732–3741.PubMedGoogle Scholar
  15. 15.
    Zolotarev, Y.A., Dadayan, A.K., Bocharov, E.V., Borisov, Y.A., Vaskovsky, B.V., Dorokhova, E.M., and Myasoedov, N.F., Amino Acids, 2003, vol. 24, pp. 325–333.CrossRefPubMedGoogle Scholar
  16. 16.
    Navolotskaya, E.V., Struktural and Functional Study of Human 2-Interferone, Interluekin-2, and Immunoglobulin G with the Use of Synthetic Peptidess, Doctoral (Biol.) Dissertation, Moscow: Institute of Immunology, 1994.Google Scholar
  17. 17.
    Uchitel’, I.Ya., Makrofagi v immunitete (Macrophages in Immunity), Moscow: Meditsina, 1978.Google Scholar
  18. 18.
    Dal Farra, C., Zsurger, N., Vincent, J.-P., and Cupo, A., Peptides, 2000, vol. 21, pp. 577–587.CrossRefGoogle Scholar
  19. 19.
    Lowry, O.H., Rosenbrough, N.J., Farr, O.L., and Randal, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  20. 20.
    Chang, K.-J., Jacobs, S., and Cuatrecasas, P., Biochim. Biophys. Acta, 1975, vol. 406, pp. 294–303.CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng, Y.C. and Prusoff, W., Biochem. Pharmacol., 1973, vol. 22, pp. 3099–3108.CrossRefPubMedGoogle Scholar
  22. 22.
    Navolotskaya, E.V., Kovalitskaya, Yu.A., Zolotarev, Yu.A., Kolobov, A.A., Kampe-Nemm, E.A., Zargarova, T.A., Malkova, N.V., Yurovskii, V.V., and Lipkin, V.M., Biokhimiya (Moscow), 2004, vol. 69, pp. 488–496.Google Scholar
  23. 23.
    Saltarelli, D., Fischer, S., and Gacon, G., Biochem. Biophys. Res. Commun., 1985, vol. 127, pp. 318–325.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Kolobov
    • 1
  • N. I. Kolodkin
    • 1
  • Yu. A. Zolotarev
    • 2
  • C. Tuthill
    • 3
  • E. V. Navolotskaya
    • 4
  1. 1.State Research Center, Institute of Extrapure BiopreparationsFMBA of the Russian FederationSt. PetersburgRussia
  2. 2.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  3. 3.SciClone Pharmaceuticals Inc.San MateoUSA
  4. 4.Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino BranchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations