Russian Journal of Bioorganic Chemistry

, Volume 32, Issue 5, pp 485–491 | Cite as

An unusual lipid a from a marine bacterium Chryseobacterium scophtalmum CIP 104199T

  • E. V. Vorobeva
  • I. N. Krasikova
  • A. S. Dmitrenok
  • P. S. Dmitrenok
  • V. V. Isakov
  • O. I. Nedashkovskaya
  • T. F. Solov’eva


The hydrolysis of defatted cells of the marine bacterium Chryseobacterium scophtalmum CIP 104199T with 10% acetic acid (3 h, 100°C) led to an unusual lipid A (LA) (yield 0.6%), obtained for the first time. Using chemical analysis, FAB MS, and NMR spectroscopy, it was shown to be D-glucosamine 1-phosphate acylated with (R)-3-hydroxy-15-methylhexadecanoic and (R)-3-hydroxy-13-methyltetroadecanoic acids at the C2 and C3 atoms, respectively. It is similar to the monosaccharide biosynthetic precursor of lipopolysaccharide (LPS), so-called lipid X (LX). Unlike LX, LA can be isolated by the treatment of bacteria with organic solvents only after the preliminary acidic hydrolysis of the cells, which suggests that LA might be strongly, probably chemically, linked to other components of the outer membrane. However, LPS cannot be such a component, because extraction with phenol-water or phenol-chloroform-petroleum ether mixtures in high yields (5.34% and 0.5%, respectively) leads to preparations that do not contain 3-deoxy-D-manno-oct-2-ulopyranosonic acid, 3-hydroxyalkanoic acids, or LA.

Key words

Chryseobacterium scophtalmum lipid A lipid X lipopolysaccharide 



fast atom bombardment mass-spectrometry


3-deoxy-D-manno-oct-2-ulopyranosonic acid


Lipid A


lipid X




O-specific polysaccharide








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lugtenberg, B. and van Alphen, L., Biochim. Biophys. Acta, 1983, vol. 737, pp. 51–115.PubMedGoogle Scholar
  2. 2.
    Moran, A., J. Toxicol.-Toxin Reviews, 1995, vol. 14, pp. 47–83.Google Scholar
  3. 3.
    Nikaido, H., Microbiol. and Mol. Rev., 2003, vol. 67, pp. 593–656.CrossRefGoogle Scholar
  4. 4.
    Alexander, C. and Rietschel, E.T., J. Endotoxin Res., 2001, vol. 7, pp. 167–202.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilkinson, S.G., Prog. Lipid Res., 1996, vol. 35, pp. 283–343.PubMedCrossRefGoogle Scholar
  6. 6.
    Galloway, S.M. and Raetz, C.R.H., J. Biol. Chem., 1990, vol. 265, pp. 6394–6402.PubMedGoogle Scholar
  7. 7.
    Helander, I.M., Lindner, B., Brade, H., Altmann, K., Lindberg, A.A., Rietschel, E.T., and Zahringer, U., Eur. J. Biochem., 1988, vol. 177, pp. 483–492.PubMedCrossRefGoogle Scholar
  8. 8.
    Tzeng, Y.L., Datta, A., Kolli, V.K., Carlson, R.W., and Stephens, D.S., J. Bacteriol., 2002, vol. 184, pp. 2379–2388.PubMedCrossRefGoogle Scholar
  9. 9.
    Meissner, J., Krauss, J.H., Jurgens, U.J., and Weckesser, J., J. Bacteriol., 1988, vol. 170, pp. 3213–3216.PubMedGoogle Scholar
  10. 10.
    Scudo, F.M., Sacchi, L., Freudenberg, M.A., Grigolo, A., and Galanos, C., Endocytobiosis Cel. Res., 1996, vol. 11, pp. 119–127.Google Scholar
  11. 11.
    Steeghs, L., Hartog, R., Boer, A., Zomer, B., Roholl, P., and van der Ley, P., Nature, 1998, vol. 392, pp. 449–450.PubMedCrossRefGoogle Scholar
  12. 12.
    Steeghs, L., de Cock, H., Evers, E., Zomer, B., Tommassen, J., and van der Ley, P., EMBO J., 2001, vol. 20, pp. 6937–6945.PubMedCrossRefGoogle Scholar
  13. 13.
    Kawasaki, S., Moriguchi, R., Sekiya, K., Nakai, T., Ono, E., Kume, K., and Kawahara, K., J. Bacteriol., 1994, vol. 176, pp. 284–290.PubMedGoogle Scholar
  14. 14.
    Batrakov, S.G., Sheichenko, V.I., and Nikitin, D.I., Biochim. Biophys. Acta, 1999, vol. 1440, pp. 163–175.PubMedGoogle Scholar
  15. 15.
    Kawahara, K., Moll, H., Knirel, Yu.A., Seydel, U., and Zahringer, U., Eur. J. Biochem., 2000, vol. 267, pp. 1837–1846.PubMedCrossRefGoogle Scholar
  16. 16.
    Schultz, C.P., Wolf, V., Lange, R., Mertens, E., Wecke, J., Naumann, D., and Zahringer, U., J. Biol. Chem., 1998, vol. 273, pp. 15 661–15 666.Google Scholar
  17. 17.
    Vandamme, P., Bemardet, J.-F., Segers, P., Kersters, K., and Holmes, B., Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 827–831.Google Scholar
  18. 18.
    Bernardet, J.F., Nakagawa, Y., and Holmes, B., Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1049–1070.PubMedCrossRefGoogle Scholar
  19. 19.
    Woese, C.R., Yang, D., Mandelco, L., and Stetter, K.O., Syst. Appl. Microbiol., 1990, vol. 13, pp. 161–165.Google Scholar
  20. 20.
    Mudarris, M., Austin, B., Segers, P., Vancanneyt, M., Hoste, B., and Bernardet, J.F., Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 447–453.PubMedCrossRefGoogle Scholar
  21. 21.
    Campbell, L.L. and Williams, O.B., J. Gen. Microbiol., 1951, vol. 5, pp. 894–905.PubMedGoogle Scholar
  22. 22.
    Qureshi, N. and Takayama, K., J. Biol. Chem., 1982, vol. 257, pp. 11 808–11 815.Google Scholar
  23. 23.
    Westphal, O and Jann, K., in Methods Carbohydr. Chem., Whistler, R.L.., Ed., New York: Academic, 1965, pp. 83–91.Google Scholar
  24. 24.
    Helander, I.M., in Enterobacterial Surface Antigens: Methods for Molecular Characterization, Korhonen, T.K.., Dawes, E.A.., and Makela, P.H.., Eds., New York: Elsevier, 1985, pp. 271–274.Google Scholar
  25. 25.
    Krasikova, I.N., Bakholdina, S.I., and Solov’eva, T.F., Bioorg. Khim., 1999, vol. 25, pp. 293–298; Rus. J. Bioorg. Chem., 1999, vol. 25, pp. 257–261.PubMedGoogle Scholar
  26. 26.
    Rooney, S.A., Goldfine, H., and Sweeley, C.C., Biochim. Biophys. Acta, 1972, vol. 270, pp. 289–295.PubMedGoogle Scholar
  27. 27.
    Wollenweber, H.-W. and Rietschel, E.Th., J. Microbiol. Methods, 1990, vol. 11, pp. 195–211.CrossRefGoogle Scholar
  28. 28.
    Vorob’eva, E.V., Dmitrenok, A.S., Dmitrenok, P.S., Isakov, V.V., Krasikova, I.N., and Solov’eva, T.F., Bioorg. Khim., 2005, vol. 31, pp. 404–413; Rus. J. Bioorg. Chem., 2005, vol. 31, pp. 362–371.PubMedGoogle Scholar
  29. 29.
    Nishijima, M. and Raetz, C.R.H., J. Biol. Chem., 1979, vol. 254, pp. 7837–7844.PubMedGoogle Scholar
  30. 30.
    Nishijima, M., Bulawa, C.E., and Raetz, C.R.H., J. Bacteriol., 1981, vol. 145, pp. 113–121.PubMedGoogle Scholar
  31. 31.
    Nishijima, M. and Raetz, C.R.H., J. Biol. Chem., 1981, vol. 256, pp. 10 690–10 696.Google Scholar
  32. 32.
    Kámpfe, P., Dreyer, U., Neef, A., Dott, W., and Busse, H.-J., Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 93–97.CrossRefGoogle Scholar
  33. 33.
    Takayama, K., Qureshi, N., Mascagni, P., Nashed, M.A., Anderson, L., and Raetz, C.R.H., J. Biol. Chem., 1983, vol. 258, pp. 7379–7386.PubMedGoogle Scholar
  34. 34.
    Krasikova, I.N., Kapustina, N.V., Isakov, V.V., Dmitrenok, A.S., Dmitrenok, P.S., Gorshkova, N.M., and Solov’eva, T.F., Eur. J. Biochem., 2004, vol. 271, pp. 2895–2804.PubMedCrossRefGoogle Scholar
  35. 35.
    Záhringer, U., Salvetzky, R., Lindner, B., and Ulmer, A., J. Endotoxin Res., 2001, vol. 7, pp. 133–146.PubMedCrossRefGoogle Scholar
  36. 36.
    Vaskovsky, V.E., Kostetsky, E.A., and Vasendin, I.M., J. Chromatogr., 1975, vol. 114, pp. 129–141.PubMedCrossRefGoogle Scholar
  37. 37.
    Leontein, K., Lindberg, B., and Lönngren, J., Carbohydr. Res., 1978, vol. 62, pp. 359–362.CrossRefGoogle Scholar
  38. 38.
    Burtseva, T.I., Glebko, L.I., and Ovodov, Y.S., Anal. Biochem., 1975, vol. 64, pp. C. 1–4.CrossRefGoogle Scholar
  39. 39.
    Vaskovsky, V.E. and Khotimchenko, S.V., J. Chromatogr., 1982, vol. 5, pp. 635–636.Google Scholar
  40. 40.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.PubMedCrossRefGoogle Scholar
  41. 41.
    Hitchcock, P.J. and Brown, T.M., J. Bacteriol., 1983, vol. 154, pp. 269–277.PubMedGoogle Scholar
  42. 42.
    Tsai, C.M. and Frasch, C.E., Anal. Biochem., 1982, vol. 119, pp. 115–119.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • E. V. Vorobeva
    • 1
  • I. N. Krasikova
    • 1
  • A. S. Dmitrenok
    • 1
  • P. S. Dmitrenok
    • 1
  • V. V. Isakov
    • 1
  • O. I. Nedashkovskaya
    • 1
  • T. F. Solov’eva
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far East DivisionRussian Academy of SciencesVladivostokRussia

Personalised recommendations