Russian Journal of Ecology

, Volume 50, Issue 1, pp 50–57 | Cite as

Factors of Dynamics of Plankton Crustacean Communities under Eutrophic Conditions

  • I. Yu. FeniovaEmail author
  • V. I. Razlutskij
  • M. I. Gladyshev
  • I. Kostrzewska-Szlakowska
  • N. N. Majsak
  • M. Rzepecki
  • N. N. Sushchik
  • N. S. Zilitinkevich


It has been shown that the main drivers of the dynamics of cladoceran and copepod abundances can be predators (fish), the quantity and/or quality of food in terms of the contents of eicosapentaenoic acid, phosphorus and nitrogen in the seston under eutrophic conditions. In experimental mesocosms under eutrophic conditions, we found that, fish did not affect the quantity and quality of food resources for crustaceans. In the second half of experiments, however, dominance shifted from copepods to cladocerans. This was due to the improvement of the food quality for cladocerans in terms of the carbon-to-phosphorus ratio in the seston rather than to fish predation. Under eutrophic conditions, fish reduced the biomass of both cladocerans and copepods without changing the ratio between them.


mesocosms nutrients chlorophyll biomass of crustaceans species structure of zooplankton food quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hairston, N.G., Smith, F.E., and Slobodkin, L.B., Community structure, population control, and competition, Am. Nat., 1960, vol. 94, pp. 421–425.CrossRefGoogle Scholar
  2. 2.
    Hrbacek, J., Dvorakova, M., Korinek, V., and Prochazkova, L., Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association, Verh. Int. Verein. Limnol., 1961, vol. 14, pp. 192–195.Google Scholar
  3. 3.
    Brooks, J.L. and Dodson, S.I., Predation body size and composition of plankton, Science, 1965, vol. 150, pp. 28–35.CrossRefGoogle Scholar
  4. 4.
    Bohl, E., Food supply and prey selection in planktivorous Cyprinidae, Oecologia, 1982, vol. 35, pp. 134–138.CrossRefGoogle Scholar
  5. 5.
    Maia-Barbosa, P.M. and Matsumura-Tundisi, T.M., Consumption of zooplanktonic organisms by Astyanax fasciatus Cuvier, 1819 (Osteichthyes, Characidae) in Lobo (Broa) Reservoir, São Carlos, SP, Brazil, Hydrobiologia, 1984, vol. 113, pp. 171–181.Google Scholar
  6. 6.
    Sommer, U. and Stibor, H., Copepoda–Cladocera–Tunicata: The role of three major mesozooplankton groups in pelagic food webs, Ecol. Res., 2002, vol. 17, pp. 161–174.CrossRefGoogle Scholar
  7. 7.
    Güntzel, A.M., Morita Melo I.K., Roche, K.F., et al., Cladocerans from gut contents of fishes associated to macrophytes from Taquari River basin, MS, Brazil, Acta Limnol. Brasil., 2012, vol. 24, pp. 97–102.CrossRefGoogle Scholar
  8. 8.
    Okun, N. and Mehner, T., Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands, Ecol. Freshw. Fish., 2005, vol. 14, pp. 139–149.CrossRefGoogle Scholar
  9. 9.
    Elser, J.J. and Urabe, J., The stoichiometry of consumer-driven nutrient recycling: Theory, observations, and consequences, Ecology, 1999, vol. 80, pp. 735–751.CrossRefGoogle Scholar
  10. 10.
    Sterner, R.W. and Elser, J.J., Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton, NJ: Princeton Univ. Press, 2002.Google Scholar
  11. 11.
    Ravet, J.L., Persson, J., and Brett, M.T., Threshold dietary polyunsaturated fatty acid concentrations for Daphnia pulex growth and reproduction, Inland Waters, 2012, vol. 2, pp. 199–209.CrossRefGoogle Scholar
  12. 12.
    Kolmakov, V.I. and Gladyshev, M.I., Growth and potential photosynthesis of cyanobacteria are stimulated by viable gut passage in crucian carp, Aquat. Ecol., 2003, vol. 37, pp. 237–242.CrossRefGoogle Scholar
  13. 13.
    Brabrand, A., Bjorn, F., Torsten, K., and Nilssen, P.J., Can iron defecation from fish influence phytoplankton production and biomass in eutrophic lakes?, Limnol. Oceanogr., 1984, vol. 29, pp. 1330–1334.CrossRefGoogle Scholar
  14. 14.
    Happey-Wood, C.M. and Pentecost, A., Algal bioassay of the water from two linked but contrasting Welsh lakes, Freshw. Biol., 1981, vol. 11, pp. 473–491.CrossRefGoogle Scholar
  15. 15.
    Lin, C.K. and Schelske, C.L., Seasonal variation of potential nutrient limitation to chlorophyll production in southern Lake Huron, Can. J. Fish. Aquat. Sci., 1981, vol. 38, pp. 1–9.CrossRefGoogle Scholar
  16. 16.
    Balushkina, E.V. and Vinberg, G.G., Relationship between body length and weight in planktonic crustaceans, in Eksperimental’nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozer (Experimental and Field Studies on Basic Biological Factors of Lake Productivity), Leningrad: Nauka, 1979, pp. 58–72.Google Scholar
  17. 17.
    Standard Methods for the Examination of Water and Wastewater, 21st ed., Washington, DC: American Public Health Association, 2005.Google Scholar
  18. 18.
    Gladyshev, M.I., Sushchik, N.N., Kolmakova, A.A., et al., Seasonal correlations of elemental and v-3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian reservoir, Aquat. Ecol., 2007, vol. 41, pp. 9–23.CrossRefGoogle Scholar
  19. 19.
    Murphy, J. and Riley, J.P., A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 1962, vol. 27, pp. 31–36.CrossRefGoogle Scholar
  20. 20.
    Hessen, D.O. and Kaartvedt, S., Top-down cascades in lakes and oceans: Different perspectives but same story?, J. Plankton Res., 2014, vol. 36, pp. 914–924.CrossRefGoogle Scholar
  21. 21.
    Gliwicz, Z.M., Between Hazards of Starvation and Risk of Predation: The Ecology of Off-shore Animals, Excellence in Ecology, vol. 12, Oldendorf/Luhe, Germany: International Ecology Institute, 2003.Google Scholar
  22. 22.
    Semenchenko, V.P., Razlutskij, V.I., Feniova, I.Yu., and Aibulatov, D.N., Biotic relations affecting species structure in zooplankton communities, Hydrobiologia, 2007, vol. 579, pp. 219–231.CrossRefGoogle Scholar
  23. 23.
    Feniova, I., Dawidowicz, P., Ejsmont-Karabin, J., et al., Effects of zebra mussels on cladoceran communities under eutrophic conditions, Hydrobiologia, 2018, vol. 822, no. 1, pp. 37–54. 10.1007/s10750-018-3699-4CrossRefGoogle Scholar
  24. 24.
    McCauley, E., Murdoch, W.W., and Nisbet, R., Growth, reproduction, and mortality of Daphnia pulex Leyding: Life at low food, Funct. Ecol., 1990, vol. 4, pp. 505–514.CrossRefGoogle Scholar
  25. 25.
    Müller-Navarra, D. and Lampert, W., Seasonal patterns of food limitation in Daphnia galeata: Separating food quantity and food quality effects, J. Plankton Res., 1996, vol. 18, pp. 1137–1157.CrossRefGoogle Scholar
  26. 26.
    DeMott, W.R., Gulati, R.D., and Siewertsen, K., Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna, Limnol. Oceanogr., 1998, vol. 43, pp. 1147–1161.CrossRefGoogle Scholar
  27. 27.
    Brett, M.T., Müller-Navarra, D.C., and Park, S.-K., Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton, Limnol. Oceanogr., 2000, vol. 45, pp. 1564–1575.CrossRefGoogle Scholar
  28. 28.
    Hall, S.R., Leibold, M.A., Lytle, D.A., and Smith, V.H., Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk, Ecology, 2004, vol. 85, pp. 2291–2301.CrossRefGoogle Scholar
  29. 29.
    Ejsmont-Karabina, J., Feniova, I., Kostrzewska-Szlakowska, I., et al., Factors influencing phosphorus regeneration by lake zooplankton: An experimental approach, Limnologica, 2018, vol. 70, pp. 58–64.CrossRefGoogle Scholar
  30. 30.
    Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A., The PEG-model of seasonal succession of planktonic events in fresh waters, Arch. Hydrobiol., 1986, vol. 106, pp. 433–471.Google Scholar
  31. 31.
    Sommer, U., Plankton Ecology. Succession in Plankton Communities, Berlin: Springer-Verlag, 1989.CrossRefGoogle Scholar
  32. 32.
    Andersen, T. and Hessen, D.O., Carbon, nitrogen and phosphorus content of freshwater zooplankton, Limnol. Oceanogr., 1991, vol. 36, pp. 807–814.CrossRefGoogle Scholar
  33. 33.
    Hassett, R.P., Cardinale, B., Stabler, L.B., and Elser, J.J., Ecological stoichiometry of N and P in pelagic ecosystems: Comparison of lakes and oceans with emphasis on the zooplankton–phytoplankton interaction, Limnol. Oceanogr., 1997, vol. 42, pp. 648–662.CrossRefGoogle Scholar
  34. 34.
    Carrillo, P., Reche, I., and Cruz-Pizarro, L., Intraspecific stoichiometric variability and the ratio of nitrogen to phosphorus resupplied by zooplankton, Freshw. Biol., 1996, vol. 36, pp. 363–374.CrossRefGoogle Scholar
  35. 35.
    Villar-Argaiz, M., Medina-Sanchez, J.M., Cruz-Pizarro, L., and Carrillo, P., Life history implications of calanoid mixodiaptomus laciniatus in C: N: P stoichiometry, Verh. Int. Ver. Theor. Angew. Limnol., 2000, vol. 27, pp. 527–531.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. Yu. Feniova
    • 1
    Email author
  • V. I. Razlutskij
    • 2
  • M. I. Gladyshev
    • 3
    • 4
  • I. Kostrzewska-Szlakowska
    • 5
  • N. N. Majsak
    • 2
  • M. Rzepecki
    • 6
  • N. N. Sushchik
    • 3
    • 4
  • N. S. Zilitinkevich
    • 7
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Scientific and Practical Center for BioresourcesNational Academy of Sciences of BelarusMinskRepublic of Belarus
  3. 3.Institute of Biophysics, Krasnoyarsk Science Centre, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia
  4. 4.Siberian Federal UniversityKrasnoyarskRussia
  5. 5.Faculty of BiologyUniversity of WarsawWarsawPoland
  6. 6.Nencki Institute of Experimental BiologyHydrobiological StationMikołajkiPoland
  7. 7.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations