Advertisement

Russian Journal of Ecology

, Volume 49, Issue 5, pp 401–405 | Cite as

Variation in the Composition of Secondary Metabolites in Flavocetraria Lichens from Western Siberia

  • I. A. Prokopiev
  • L. N. Poryadina
  • L. A. Konoreva
  • S. V. Chesnokov
  • A. L. Shavarda
Article
  • 8 Downloads

Abstract

The composition and contents of secondary metabolites in Flavocetraria lichens from Eastern Siberia were analyzed using herbarium specimens. Based on the composition of identified metabolites, three F. cucullata chemotypes and two F. nivalis chemotypes were distinguished. Distinct geographic differentiation between the F. cucullata chemotypes was revealed, probably reflecting their adaptation to environmental conditions. The content of usnic acid in F. cucullata thalli was found to correlate with the latitude of growing region. This may be regarded as evidence for a protective role of this metabolite in lichens growing at high latitudes and exposed to excess solar irradiation during the polar day.

Keywords

lichens genus Flavocetraria secondary metabolites chemotypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stocker-Wörgötter, E., Secondary chemistry of lichenforming fungi: Chemosyndromic variation and DNAanalyses of cultures and chemotypes in the Ramalina farinacea complex, The Bryologist, 2008, vol. 107, no. 2, pp. 152–162.CrossRefGoogle Scholar
  2. 2.
    Egan, R.S., Correlations and non-correlations of chemical variation patterns with lichen morphology and geography, The Bryologist, 1986, vol. 89, no. 2, pp. 99–110.CrossRefGoogle Scholar
  3. 3.
    Culberson, W.L., Culberson, C.F., and Johnson, A., Pseudevernia furfuracea–Olivetorina relationships: Chemistry and ecology, Mycologia, 1977, vol. 69, pp. 604–614.CrossRefGoogle Scholar
  4. 4.
    Park, Y.S., Habitat selection in a pair of sibling chemospecies of the lichen genus Cladonia, Am. Midl. Nat., 1985, vol. 114, pp. 180–183.CrossRefGoogle Scholar
  5. 5.
    Stocker-Wörgötter, E., Biochemical diversity and ecology of lichen-forming fungi: Lichen substances, chemosyndromic variation and origin of polyketide-type metabolites (biosynthetic pathways), Recent Adv. Lichenol., 2016, vol. 2, pp. 161–179.Google Scholar
  6. 6.
    Orange, A., Chemical variation in Lepraria eburnea, The Lichenologist, 1997, vol. 29, no. 1, pp. 9–13.Google Scholar
  7. 7.
    Farkas, E., Kursinszki, L., Szőke, É., and Molnár, K., New chemotypes of the lichens Xanthoparmelia pulvinaris and X. subdiffluens (Parmeliaceae, Ascomycota), Herzogia, 2015, vol. 28, no. 2, pp. 679–689.Google Scholar
  8. 8.
    Ravinskaya, A.P. and Vainshtein, E.A., Effect of certain ecological factors on the contents of lichen substances, Ekologiya, 1975, no. 3, pp. 82–85.Google Scholar
  9. 9.
    Prokopiev, I.A., Shein, A.A., Filippova, G.V, et al., Annual dynamics of usnic acid contents in thalli of Cladonia and Flavocetraria lichens from Central Yakutia, Khim. Rastit. Syr’ya, 2015, no. 4, pp. 45–49.Google Scholar
  10. 10.
    Randlane, T. and Saag, A., Chemical variation and geographical-distribution of Asahinea chrysantha (Tuck.) Culb. and C. Culb, The Lichenologist, 1989, vol. 21, pp. 303–311.CrossRefGoogle Scholar
  11. 11.
    Andreev, V.N., Tundrovedenie (Tundra Science), Novosibirsk: Nauka, 2017.Google Scholar
  12. 12.
    Huneck, S. and Yoshimura, I., Identification of Lichen Substances, Berlin: Springer-Verlag, 1996.CrossRefGoogle Scholar
  13. 13.
    Stenroos, S., Ahti, T., Lohtander, K., and Myllys, L., Suomen Jäkäläopas, Norrlinia, 2011, vol. 21, pp. 1–534.Google Scholar
  14. 14.
    Rundel, P.W., Ecological role of secondary lichen substances, Biochem. Syst. Ecol., 1978, vol. 6, pp. 157–170.CrossRefGoogle Scholar
  15. 15.
    Molnár, K. and Farkas, E., Current results on biological activities of lichen secondary metabolites, Z. Naturforsch., 2010, vol. 65, pp. 157–173.CrossRefGoogle Scholar
  16. 16.
    Lawrey, J.D., Biological role of lichen substances, The Bryologist, 1986, vol. 89, pp. 111–122.CrossRefGoogle Scholar
  17. 17.
    Prokopiev, I.A., Shavarda, A.L., Shein, A.A., and Filippova, G.V., Contents of usnic acid enantiomers in thalli of Flavocetraria cucullata (Parmeliaceae) from some regions of Yakutia, Rastit. Resur., 2016, vol. 52, no. 1, pp. 157–165.Google Scholar
  18. 18.
    Bjerke, J.W., Gwynn-Jones, D., and Callaghan, T.V., Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens, Environ. Exp. Bot., 2005, vol. 53, pp. 139–149.CrossRefGoogle Scholar
  19. 19.
    BeGora, M.D. and Fahselt, D., Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance, The Bryologist, 2001, vol. 1, pp. 34–140.Google Scholar
  20. 20.
    Nybakken, L. and Julkunen-Tiitto, R., UV-B induces usnic acid in reindeer lichens, The Lichenologist, 2006, vol. 38, no. 5, pp. 477–485.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Prokopiev
    • 1
  • L. N. Poryadina
    • 1
  • L. A. Konoreva
    • 2
    • 4
  • S. V. Chesnokov
    • 2
  • A. L. Shavarda
    • 2
    • 3
  1. 1.Institute for Biological Problems of the Cryolithozone, Siberian BranchRussian Academy of SciencesYakutskRussia
  2. 2.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Research Resource Center for Molecular and Cell TechnologiesSt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.The Polar-Alpine Botanical Garden and Institution, Kola Science CenterRussian Academy of ScienceMurmansk region, KirovskRussia

Personalised recommendations