Advertisement

Russian Journal of Ecology

, Volume 49, Issue 5, pp 442–448 | Cite as

Food Chains and Their Dynamics in Ecosystems of Shallow Lakes with Different Water Salinities

  • S. M. Golubkov
  • N. V. Shadrin
  • M. S. Golubkov
  • E. V. Balushkina
  • L. F. Litvinchuk
Article

Abstract

The dynamics of food chains upon changes in water salinity has been analyzed using the example of six poly- and hyperhaline lakes in the Crimea. The results show that ecosystems of saline lakes are sensitive to the impact of external factors. Changes in weather conditions often lead to fluctuations of water salinity, which may cause a changeover in the hydrobiological regime of the lake. In lakes with high water salinity, the shortening of food chain takes place, and the cascade effect is observed in their dynamics.

Keywords

poly- and hyperhaline lakes food chain primary production zooplankton zoobenthos Crimea climatic factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams, W.D., Management of Inland Saline Waters, Guidelines of Lake Management, vol. 6, Kusatsu, Japan: ILEC/UNEP, 1998.Google Scholar
  2. 2.
    Duarte, C.M., Prairie, Y.T., Montes, C., et al., CO2 emissions from saline lakes: A global estimate of a surprisingly large flux, J. Geophys. Res., 2008, vol. 113, pp. 1–7.CrossRefGoogle Scholar
  3. 3.
    Shadrin, N.V. and Anufriieva, E.V., Climate change impact on the marine lakes and their crustaceans: The case of marine hypersaline lake Bakalskoye (Ukraine), Turk. J. Fish. Aquat. Sci., 2013, vol. 13, pp. 603–611.CrossRefGoogle Scholar
  4. 4.
    Balushkina, E.V., Golubkov, S.M., Golubkov, M.S., and Litvinchuk, L.F., Structural and functional characteristics of small saline lake ecosystems of the Crimea, Biol. Vnutr. Vod, 2007, no. 2, pp. 11–19.Google Scholar
  5. 5.
    Balushkina, E.V., Golubkov, S.M., Golubkov, M.S., et al., Effects of abiotic and biotic factors on the structural and functional organization of saline lake ecosystems of the Crimea, Zh. Obshch. Biol., 2009, vol. 70, no. 6, pp. 504–514.PubMedGoogle Scholar
  6. 6.
    Golubkov, S., Kemp, R., Golubkov, M., et al., Biodiversity and the functioning of hypersaline lake ecosystems from Crimea Peninsula (Black Sea), Fundam. Appl. Limnol., 2007, vol. 169, pp. 79–87.CrossRefGoogle Scholar
  7. 7.
    Lin, Q., Xu, L., Hou, J., et al., Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming, Water Res., 2017, vol. 124, pp. 618–629.CrossRefPubMedGoogle Scholar
  8. 8.
    Williams, W.D., Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025, Environ. Conserv., 2002, vol. 29, pp. 154–167.CrossRefGoogle Scholar
  9. 9.
    Wurtsbaugh, W.A., Miller, C., Null, S.E., et al., Decline of the world’s saline lakes, Nat. Geosci., 2017, vol. 10, pp. 816–821.CrossRefGoogle Scholar
  10. 10.
    Anufriieva, E.V., Holynska, M., and Shadrin, N.V., Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna, Ann. Zool., 2014, vol. 64, pp. 109–130.CrossRefGoogle Scholar
  11. 11.
    Petchey, O.L., Downing, A.L., Mittelbach, G.G., et al., Species loss and the structure and functioning of the multitrophic aquatic systems, Oikos, 2004, vol. 104, pp. 467–478.CrossRefGoogle Scholar
  12. 12.
    Golubkov, M.S., Primary production of plankton and decomposition of organic matter in saline lakes of the Crimea Peninsula, Inland Water Biol., 2012, vol. 5, no. 4, pp. 322–327.CrossRefGoogle Scholar
  13. 13.
    Alimov, A.F., Bogatov, V.V., and Golubkov, S.M., Produktsionnaya gidrobiologiya (Production Hydrobiology), St. Petersburg: Nauka, 2013.Google Scholar
  14. 14.
    Salazkin, A.A., Ivanova, M.B., and Ogorodnikova, V.A., Metodicheskie rekomendatsii po sboru i obrabotke materialov pri gidrobiologicheskikh issledovaniyakh na presnovodnykh vodoemakh. Zooplankton i ego produktsiya (Methodological Guidelines for Material Sampling and Processing during Hydrobiological Research on Fresh Water Bodies: Zooplankton and Its Production), Leningrad: GosNIORKh, 1984.Google Scholar
  15. 15.
    Khmeleva, N.N., Energy expenditures for respiration, growth, and reproduction in Artemia salina (L.), in Fiziologicheskie osnovy ekologii vodnykh zhivotnykh. Biologiya morya (Physiological Principles of Aquatic Animal Ecology. Marine Biology), vol. 15, Kiev: Naukova Dumka, 1968, pp. 71–98.Google Scholar
  16. 16.
    Sushchenya, L.M., Intensivnost’ dykhaniya rakoobraznykh (Respiration Rate in Cristaceans), Kiev: Naukova Dumka, 1972.Google Scholar
  17. 17.
    Galkovskaya, G.A., The rate of oxygen consumption by rotifers from natural populations, Izv. Akad. Nauk BSSR, Ser. Biol. Nauki, 1980, no. 6, pp. 114–116.Google Scholar
  18. 18.
    Balushkina, E.V. and Petrova, N.P., Chironomid population functioning in hyperhaline lakes of the Crimea, Tr. Zool. Inst. Akad. Nauk SSSR, 1989, vol. 205, pp. 129–140.Google Scholar
  19. 19.
    Panov, V.E., Asellus aquaticus (L.): Growth, population structure and production, in Soobshchestva presnovodnykh bespozvonochnykh v zaroslyakh makrofitov (Freshwater Invertebrate Communities in Macrophyte Beds), Tr. Zool. Inst. Akad. Nauk SSSR, 1988, vol. 186, pp. 53–73.Google Scholar
  20. 20.
    Golubkov, S.M., Functional ecology of amphibiotic insect larvae, Tr. Zool. Inst. Ross. Akad. Nauk, 2000, vol. 284.Google Scholar
  21. 21.
    Alimov, A.F., Arakelova, E.S., and Vlasova, V.G., Structural and functional characteristics of gastropod and bivalve populations, in Soobshchestva presnovodnykh bespozvonochnykh v zaroslyakh makrofitov (Freshwater Invertebrate Communities in Macrophyte Beds), Tr. Zool. Inst. Akad. Nauk SSSR, 1988, vol. 186, pp. 41–53.Google Scholar
  22. 22.
    Melack, J.M. and Jellison, R., Limnological conditions in Mono Lake: Contrasting monomixis and meromixis in the 1990s, Hydrobiologia, 1998, vol. 384, pp. 21–39.CrossRefGoogle Scholar
  23. 23.
    Jia, Q., Anufriieva, E., Liu, X., et al., Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan Lake Dangxiong Co: The new population and consequences for the environment and for humans, Chin. J. Oceanol. Limnol., 2015, vol. 33, pp. 1451–1460.CrossRefGoogle Scholar
  24. 24.
    Carpenter, S.R., Kitchell, J.F., and Hodgson, J., Cascading trophic interaction and lake productivity, Bio-Science, 1985, vol. 35, pp. 634–639.Google Scholar
  25. 25.
    Golubkov, S.M., Role of consumers in the dynamics of food chains and the functioning of aquatic ecosystems, J. Siberian Fed. Univ., Ser. Biol., 2013, vol. 4, no. 6, pp. 335–353.Google Scholar
  26. 26.
    Lavens, P. and Sorgeloos, P., The history, present status and prospects of the availability of Artemia cysts for aquaculture, Aquaculture, 2000, vol. 181, pp. 397–403.CrossRefGoogle Scholar
  27. 27.
    Moore, P.G., Davenport, J., and Middleton, N.E., On the density of certain Amphipoda and Isopoda, J. Mar. Biol. Assoc. U.K., 1997, vol. 78, pp. 1–11.Google Scholar
  28. 28.
    Collins, N.C., Population of Ephydra cenerea Jones, the only benthic metazoan of the Great Salt Lake, U.S.A., Hydrobiologia, 1980, vol. 68, pp. 99–112.CrossRefGoogle Scholar
  29. 29.
    Shadrin, N.V., Anufriieva, E.V., Belyakov, V.P., and Bazhora, A.I., Chironomidae larvae in hypersaline waters of the Crimea: Diversity, distribution, abundance and production, Eur. Zool. J., 2017, vol. 84, pp. 61–72.CrossRefGoogle Scholar
  30. 30.
    Davenport, J. and Healy, A., Relationship between medium salinity, body density, buoyancy and swimming in Artemia franciscana larvae: Constraints on water column use?, Hydrobiologia, 2006, vol. 556, pp. 295–301.CrossRefGoogle Scholar
  31. 31.
    Anufriieva, E.V. and Shadrin, N.V., The swimming behavior of Artemia (Anostraca): New experimental and observational data, Zoology, 2014, vol. 117, pp. 415–421.CrossRefPubMedGoogle Scholar
  32. 32.
    Blindow, I., Hargeby, A., and Andersson, G., Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation, Aquat. Bot., 2002, vol. 72, pp. 315–334.CrossRefGoogle Scholar
  33. 33.
    Hart, C.M., Gonzalez, M.R., Simpson, E.P., and Hurlbert, S.H., Salinity and fish effects on Salton Sea microecosystems: Zooplankton and nekton, Hydrobiologia, 1998, vol. 381, pp. 129–152.CrossRefGoogle Scholar
  34. 34.
    Anufriyeva, Y.V. and Shadrin, N.V., First record of Ranatra linearis (Hemiptera, Nepidae) in hypersaline water bodies of the Crimea, Hydrobiol. J., 2016, vol. 52, no. 2, pp. 49–53.Google Scholar
  35. 35.
    Golubkov, S.M., Berezina, N.A., Gubelit, Y.I., et al., A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea), Mar. Pollut. Bull., 2018, vol. 126, pp. 43–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Jeppesen, E., Sondergaard, M., Kanstrup, E., et al., Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ?, Hydrobiologia, 1994, vol. 275–276, pp. 15–30.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. M. Golubkov
    • 1
  • N. V. Shadrin
    • 2
  • M. S. Golubkov
    • 1
  • E. V. Balushkina
    • 1
  • L. F. Litvinchuk
    • 1
  1. 1.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Kovalevsky Institute of Marine Biological ResearchRussian Academy of SciencesSevastopolRussia

Personalised recommendations