Russian Journal of Ecology

, Volume 49, Issue 4, pp 356–361 | Cite as

Variation in Morphophysiological Traits of Male and Female Aporia crataegi L. (Lepidoptera: Pieridae) Depending on the Timing of Adult Emergence

  • A. O. ShkurikhinEmail author
  • E. Yu. Zakharova
  • T. S. Oslina
  • I. A. Solonkin


The correlation between the timing of adult emergence and variation in morphophysiological parameters of males and females has been analyzed in the black-veined white Aporia crataegi L. In 2013 to 2015, black-veined white butterflies were collected from a natural population in the south of Sverdlovsk oblast throughout the emergence period; at the same time, adult insects were reared from pupae in individual cages. Comparison of the field observations in nature and the results of rearing preimaginal stages has shown that the largest adults are the first to emerge, while the smallest are the last to emerge. This pattern holds true both for the parameters varying throughout the adult insect life (body weight and relative abdomen weight) and for the permanent characteristic of the “structural” size (wing area). The influence of protandry and food availability to caterpillars on the variation in the size of adult A. crataegi during the period of generation emergence is discussed.


variation protandry growth duration body weight wing size Aporia crataegi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stearns, S.C., The Evolution of Life Histories, Oxford: Oxford Univ. Press, 1992.Google Scholar
  2. 2.
    Roff, D.A., Life History Evolution, Sunderland: Sinauer Assoc., 2002.Google Scholar
  3. 3.
    Flatt, T. and Heyland, A., Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-offs, Oxford: Oxford Univ. Press, 2011.CrossRefGoogle Scholar
  4. 4.
    Blanckenhorn, W.U., The evolution of body size: What keeps organisms small?, Q, Rev. Biol., 2000, vol. 75, pp. 385–407.CrossRefGoogle Scholar
  5. 5.
    Wiklund, C., Kaitala, A., Lindfors, V., and Abenius, J., Polyandry and its effect on female reproduction in the greenveined white butterfly (Pieris napi L.), Behav. Ecol. Sociobiol., 1993, vol. 33, pp. 25–33.CrossRefGoogle Scholar
  6. 6.
    Stjernholm, F. and Karlsson, B., Nuptial gifts and the use of body resources for reproduction in the greenveined white butterfly Pieris napi, Proc. Biol. Sci., 2000, vol. 267, pp. 807–811.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wiklund, C. and Fagerstrom, T., Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies, Oecologia, 1977, vol. 31, pp. 153–158.CrossRefPubMedGoogle Scholar
  8. 8.
    Nylin, S., Wiklund, C., Wickman, P.O., and Garcia-Barros, E., Absence of trade-offs between sexual size dimorphism and early male emergence in a butterfly, Ecology, 1993, vol. 74, pp. 1414–1427.CrossRefGoogle Scholar
  9. 9.
    Morbey, Y.E. and Ydenberg, R.C., Protandrous arrival timing to breeding areas: A review, Ecol. Lett., 2001, vol. 4, pp. 663–673.CrossRefGoogle Scholar
  10. 10.
    Zonneveld, C., Being big or emerging early? Polyandry and the trade-off between size and emergence in male butterflies, Am. Nat., 1996, vol. 147, no. 6, pp. 946–965.CrossRefGoogle Scholar
  11. 11.
    Blanckenhorn, W.U., Dixon, A.F.G., Fairbairn, D.J., et al., Proximate causes of Rensch’s rule: Does sexual size dimorphism in arthropods result from sex differences in development time?, Am. Nat., 2007, vol. 169, pp. 245–257.PubMedGoogle Scholar
  12. 12.
    Dmitriew, C.M., The evolution of growth trajectories: What limits growth rate?, Biol. Rev., 2011, vol. 86, no. 1, pp. 97–116.CrossRefPubMedGoogle Scholar
  13. 13.
    Nijhout, H.F., Riddiford, L.M., Mirth, C., et al., The developmental control of size in insects, WIREs Dev. Biol., 2014, vol. 3, no. 1, pp. 113–134.CrossRefGoogle Scholar
  14. 14.
    Arendt, J.D., Adaptive intrinsic growth rates: An integration across taxa, Q. Rev. Biol., 1997, vol. 72, no. 2, pp. 149–177.CrossRefGoogle Scholar
  15. 15.
    Gotthard, K., Adaptive growth decisions in butterflies, BioScience, 2008, vol. 58, no. 3, pp. 222–230.CrossRefGoogle Scholar
  16. 16.
    Carvalho, M.C., Queiroz, P.C.D., and Ruszczyk, A., Protandry and female size–fecundity variation in the tropical butterfly Brassolis sophorae, Oecologia, 1998, vol. 116, pp. 98–102.CrossRefPubMedGoogle Scholar
  17. 17.
    Andreeva, E.M., Zherdeva, P.D., Zakharova, E.Yu., and Shkurikhin, A.O., Protandry and variation of some characters in gypsy moth, Lymantria dispar (L.) depending on the time of adult emergence in the course of laboratory experiment, Izv. S.-Peterb. Lesotekh. Akad., St. Petersburg: SPbGLTU, 2012, no. 200, pp. 4–15.Google Scholar
  18. 18.
    Zakharova, E.Yu., Protandry and body size variation in the satyrs (Lepidoptera: Satyridae), Evraz. Entomol. Zh., 2004, vol. 3, no. 1, pp. 59–65.Google Scholar
  19. 19.
    Shkurikhin, A.O. and Oslina, T.S., Seasonal phenotypic plasticity of the polyvoltine white butterfly Pieris napi L. (Lepidoptera: Pieridae) in the Southern Urals, Russ. J. Ecol., 2015, vol. 46, no. 1, pp. 96–102. doi 10.1134/S1067413615010178CrossRefGoogle Scholar
  20. 20.
    Krasnyuk, P.I., The black-veined white (Aporia crataegi L.), Tr. Mleev. Sadovo-Ogorod. Opyt. Stantsii: Entomol. Otdel, Mleev, 1928, no. 12.Google Scholar
  21. 21.
    Ammosov, Yu.N., The black-veined white (Aporia crataegi L.) in Central Yakutia, in Vrednye nasekomye lesov Sovetskogo Dal’nego Vostoka (Insect Pests in Forests of the Soviet Far East), Vladivostok: Dal’izdat, 1966, pp. 169–172.Google Scholar
  22. 22.
    Tatarinov, A.G. and Dolgin, M.M., Vidovoe raznoobrazie bulavousykh cheshuekrylykh na Evropeiskom Severo-Vostoke Rossii (Species Diversity of Rhopalocera Lepidopterans in the Northeast of European Russia), St. Petersburg: Nauka, 2001.Google Scholar
  23. 23.
    Wiklund, C. and Forsberg, J., Sexual size dimorphism in relation to female polygamy and protandry in butterflies: A comparative study of Swedish Pieridae and Satyridae, Oikos, 1991, vol. 60, pp. 373–381.CrossRefGoogle Scholar
  24. 24.
    Rohlf, F.J., TpsDig, Digitize Landmarks and Outlines, Version 2.10, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2006Google Scholar
  25. 25.
    Rohlf, F.J., TpsUtil, File Utility Program, Version 1.40, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2008.Google Scholar
  26. 26.
    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1.Google Scholar
  27. 27.
    Shingleton, A.W., Frankino, W., Flatt, T., et al., Size and shape: The developmental regulation of static allometry in insects, BioEssays, 2007, vol. 29, pp. 536–548.CrossRefPubMedGoogle Scholar
  28. 28.
    Karlsson, B. and Wickman, P.-O., Increase in reproductive effort as explained by body size and resource allocation in the speckled wood butterfly, Pararge aegeria (L.), Funct. Ecol., 1990, vol. 4, pp. 609–617.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Shkurikhin
    • 1
    Email author
  • E. Yu. Zakharova
    • 1
    • 2
  • T. S. Oslina
    • 1
  • I. A. Solonkin
    • 1
    • 2
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations