Advertisement

Russian Journal of Ecology

, Volume 49, Issue 4, pp 306–311 | Cite as

Carbon Emission from the Surface of Coarse Woody Debris in Korean Pine Forests of Southern Primorye

  • A. V. Ivanov
  • M. Braun
  • D. G. Zamolodchikov
  • S. Yu. Loshakov
  • O. V. Pototskii
Article
  • 24 Downloads

Abstract

Carbon dioxide fluxes from the surface of coarse woody debris (CWD) have been measured in Korean pine forests of the southern Sikhote-Alin mountain range. The seasonal dynamics of oxidative conversion of CWD carbon have been evaluated, and average values of the CO2 emission rate have been determined for CWD fragments of three tree species at different stages of decomposition. The degree of decomposition is an important factor of spatial variation in CO2 emission rate, and temporal variation in this parameter is adequately described by an exponential function of both CWD temperature and air temperature (R2 = 0.65–0.75).

Keywords

carbon cycle Korean pine forests carbon dioxide (CO2) emission coarse woody debris (CWD) decomposition stage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ni, Y., Eskeland, G.S., Giske, J., and Hansen, J.-P., The global potential for carbon capture and storage from forestry, Carbon Balance Manag., 2016, vol. 11, no. 3, pp. 1–8.Google Scholar
  2. 2.
    Ladrón, De., Guevara, M., Lázaro, R., Quero, J.L., et al., Easy-to-make portable chamber for in situ CO2 exchange measurements on biological soil crusts, Photosynthetica, 2015, vol. 53, no. 1, pp. 72–84.CrossRefGoogle Scholar
  3. 3.
    Sabrekov, A.F., Glagolev, M.V., Fastovets, I.A., et al., Relationship of methane consumption with the respiration of soil and grass–moss layers in forest ecosystems of the southern taiga in western Siberia, Euras. Soil Sci., 2015, vol. 48, no. 8, pp. 841–851.CrossRefGoogle Scholar
  4. 4.
    Korovin, G.N., The Kyoto Protocol and Russian forests, Na Puti k Ustoichivomu Razvitiyu Rossii, 2003, no. 25, pp. 9–10.Google Scholar
  5. 5.
    Zamolodchikov, D.G., Grabovskii, V.I., and Kraev, G.N., A twenty year retrospective on the forest carbon dynamics, Contemp. Probl. Ecol., 2011, vol. 4, no. 7, pp. 705–715.CrossRefGoogle Scholar
  6. 6.
    Zamolodchikov, D.G., The assessment of carbon pool in coarse woody debris in forests of Russia with account of the influence of fires and fellings, Lesovedenie, 2009, no. 4, pp. 3–15.Google Scholar
  7. 7.
    Shvidenko, A.Z. and Shchepashchenko, D.G., Carbon budget of Russian forests, Sib. Lesn. Zh., 2014, no. 1, pp. 69–92.Google Scholar
  8. 8.
    Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia), V.N. Kudeyarov, G.A. Zavarzin, S.A. Blagodatskii, Eds., Moscow: Nauka, 2007.Google Scholar
  9. 9.
    Kobak, K.I., Bioticheskie komponenty uglerodnogo tsikla (Biotic Components of Carbon Cycle), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  10. 10.
    Kurganova, I.N., Lopes, de Gerenyu, V.O., Myakshina, T.N., et al., Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate, Contemp. Probl. Ecol., 2017, vol. 10, no. 7, pp. 748–760.CrossRefGoogle Scholar
  11. 11.
    Mukhin, V.A. and Voronin, P.Yu., Mycogenic decomposition of wood and carbon emission in forest ecosystems, Russ. J. Ecol., 2007, vol. 38, no. 1, pp. 22–26.CrossRefGoogle Scholar
  12. 12.
    Shvidenko, A.Z., Shchepashchenko, D.G., and Nilsson, S., Assessment of woody debris pool in forests of Russia, Lesnaya Taksatsiya i Lesoustroistvo, 2009, no. 1 (41), pp. 133–147.Google Scholar
  13. 13.
    Noh, N.J., Kim, C., Bae, S.W., et al., Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities, J. Plant Ecol., 2013, vol. 6, no. 5, pp. 368–379.CrossRefGoogle Scholar
  14. 14.
    Zamolodchikov, D.G., Grabovskii, V.I., and Shulyak, P.P., Inventory of carbon budget in the forest sector of Russia, Tr. S.-Peterb. Nauchno-Issled. Inst. Lesn. Khoz., 2013, no. 3, pp. 22–32.Google Scholar
  15. 15.
    Safonov, S.S., Karelin, D.V., Grabar, V.A., et al., The emission of carbon from the decomposition of woody debris in the southern taiga spruce forest, Russ. J. For. Sci., 2012, vol. 5, pp. 44–49.Google Scholar
  16. 16.
    Sun, X.Y. and Wang, C.K., Carbon dioxide fluxes from downed log decomposition of major tree species in northeastern China, Acta Ecol. Sinica, 2007, vol. 27, no. 12, pp. 5130–5137.Google Scholar
  17. 17.
    Forrester, J.A., Mladenoff, D.J., D’Amato, A.W., et al., Temporal trends and sources of variation in carbon flux from coarse woody debris in experimental forest canopy openings, Oecologia, 2015, vol. 179, no. 3, pp. 889–900.CrossRefPubMedGoogle Scholar
  18. 18.
    Ohtsuka, T., Shizu, Y., Hirota, M., et al., Role of coarse woody debris in the carbon cycle of Takayama forest, central Japan, Ecol. Res., 2014, vol. 29, no. 1, pp. 91–101.CrossRefGoogle Scholar
  19. 19.
    Diyarova, D.K., Gitarskii, M.L., Mukhin, V.A., et al., CO2-Emission activity of woody debris at different stages of its biological decomposition, in Nauchnye osnovy ustoichivogo upravleniya lesami: Mat-ly IIVseross. nauch. konf. (Scientific Foundations of Sustainable Forest Management: Proc. II All-Russia Sci. Conf.), Moscow: TsEPL RAN, 2016, pp. 85–86.Google Scholar
  20. 20.
    Ivanov, A.V., Loshakov, S.Yu., and Demchenko, R.V., Assessment of the contribution of coarse woody debris to the degradant carbon flux in conifer–broadleaf forests of southern Primorye, in Nauchnye osnovy ustoichivogo upravleniya lesami: Mat-ly IIVseross. nauch. konf. (Scientific Foundations of Sustainable Forest Management: Proc. II All-Russia Sci. Conf.), Moscow: TsEPL RAN, 2016, pp. 87–88.Google Scholar
  21. 21.
    Mukhin, V.A., Voronin, P.Yu., Sukhareva, A.V., and Kuznetsov, V.V., Wood decomposition by fungi in the boreal–humid forest zone under the conditions of climate warming, Dokl. Biol. Sci, 2010, vol. 431, pp. 110–112.CrossRefGoogle Scholar
  22. 22.
    Wu, J., Zhang, X., Wang, H., et al., Respiration of downed logs in an old-growth temperate forest in northeastern china, Scand. J. For. Res., 2010, vol. 25, no. 6, pp. 500–506.CrossRefGoogle Scholar
  23. 23.
    Herrmann, S. and Bauhus, J., Effects of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species, Scand. J. For. Res., 2012, vol. 28, no. 4, pp. 346–357.CrossRefGoogle Scholar
  24. 24.
    Mukhin, V.A., Wood-decay fungi: The modern ecological paradigm, in Bioraznoobrazie i ekologiya gribov i gribopodobnykh organizmov Severnoi Evrazii. Mat-ly Vseros. konf. s mezhdunarodnym uchastiem (Biodiversity of Fungi and Fungi-like Organisms in Northern Eurasia: Proc. All-Russia Conf. with International Participation), Yekaterinburg, 2015, pp. 170–173.Google Scholar
  25. 25.
    Gough, C.M., Vogel, C.S., Kazanski, C., et al., Coarse woody debris and the carbon balance of a north temperate forest, For. Ecol. Manag., 2007, vol. 244, nos. 1–3, pp. 60–67.CrossRefGoogle Scholar
  26. 26.
    Ivanov, A.V., Prikhod’ko, O.Yu., and Demchenko, R.V., Fallen wood pools in natural conifer–broadleaf stands of southern Primorye, Tr. S.-Peterb. Nauchno-Issled. Inst. Lesn. Khoz., 2016, no. 2, pp. 17–28.Google Scholar
  27. 27.
    Karelin, D.V. and Utkin, A.I., Decomposition rate of coarse woody debris in forest ecosystems: Results of literature review, Lesovedenie, 2006, no. 2, pp. 26–33.Google Scholar
  28. 28.
    Kapitsa, E.A., Trubitsyna, E.A., and Shorokhova, E.V., Biogenic xylolysis of stems, branches, and roots of forest-forming tree species in dark conifer northern taiga forests, Lesovedenie, 2012, no. 3, pp. 51–58.Google Scholar
  29. 29.
    Komin, A.E., Usov, V.N., and Ivanov, A.V., Developmental prospects of Primorye State Agricultural Academy in training specialists for forestry, Vestn. Irkutsk. Gos. S-kh. Akad., 2013, no. 58, pp. 158–163.Google Scholar
  30. 30.
    Koryakin, V.N., Khvoino-shirokolistvennye lesa Dal’nego Vostoka (Conifer–Broadleaf Forests of the Far East), Khabarovsk: Dal’NIILKh, 2007.Google Scholar
  31. 31.
    Man’ko, Yu.I. and Kudinov, A.I., Dynamics of oak–Korean pine forests of southern Primorye, Lesovedenie, 2007, no. 2, pp. 3–11.Google Scholar
  32. 32.
    Karelin, D.V., Pochikalov, A.V., Zamolodchikov, D.G., and Gitarskii, M.L., Spatiotemporal controls of soil CO2 fluxes in south taiga spruce forest in European Russia, Lesovedenie, 2014, vol. 4, pp. 56–66.Google Scholar
  33. 33.
    R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, 2013. http://www.R-project.org/.
  34. 34.
    Mukhortova, L.V., Carbon and nutrient release during decomposition of coarse woody debris in forest ecosystems of Central Siberia, Folia Forest. Polonica, Ser. A, 2012, vol. 54, no. 2, pp. 71–83.Google Scholar
  35. 35.
    Safonova, T.I., Dynamics of the species composition of fungi on aspen wood during successions in the southern Cisural region, Vestn. Orenburg. Gos. Ped. Univ., 2013, no. 4 (8), pp. 34–37.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Ivanov
    • 1
    • 2
  • M. Braun
    • 3
  • D. G. Zamolodchikov
    • 4
  • S. Yu. Loshakov
    • 1
    • 2
  • O. V. Pototskii
    • 1
    • 2
  1. 1.Primorye State Agricultural AcademyUssuriyskRussia
  2. 2.Far East Forestry Research InstituteKhabarovskRussia
  3. 3.University of Natural Resources and Life Sciences, Vienna (BOKU)ViennaAustria
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations