Russian Journal of Ecology

, Volume 49, Issue 2, pp 135–142 | Cite as

Periphyton Developed on Artificial Substrates: Effect of Substrate Type and Incubation Depth

  • Ivana Trbojević
  • Jelena Jovanović
  • Dušan Kostić
  • Slađana Popović
  • Dragana Predojević
  • Vesna Karadžić
  • Gordana Subakov Simić
Article
  • 10 Downloads

Abstract

The aim of this study was to assess the effect of substrate type and incubation depth on periphyton that had developed on artificial substrates. Uniform rectangular tiles made out of artificial substrates: glass, ceramic, willow tree and yew tree, were fixed on a floating buoy and deployed at three different depths in a photic zone of the Sava Lake (Belgrade, Serbia). Non-taxonomic attributes in the developed biofilm were estimated week-by-week from the start of the experiment in July, until its end in September 2014. Through assessment of substrate type and depth of incubation effect we concluded that these parameters for the fact influence periphyton development and composition. Glass was preferred by autotrophic component over ceramic and wooden substrates. In general, substrate type effect was diminished by increasing incubation depth. When non-taxonomic parameters are to be used in biomonitoring studies, our results suggest that glass substrate and shallow layer of water column (up to 50 cm) for incubation should be preferred.

Keywords

periphyton artificial substrates glass wood ceramic depth chlorophyll a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCormick, P.V. and Stevenson, R.J., Periphyton as a tool for ecological assessment and management in the Florida Everglades, J. Phycol., 1998, vol. 34, no. 5, pp. 726–733.CrossRefGoogle Scholar
  2. 2.
    MacDonald, L.A., Balasubramaniam, A.M., Hall, R.I., Wolfe, B.B., and Sweetman, J.N., Developing biomonitoring protocols for shallow Arctic lakes using diatoms and artificial substrate samplers, Hydrobiologia, 2012, vol. 683, no. 1, pp. 231–248.CrossRefGoogle Scholar
  3. 3.
    Wiklund, J.A., Bozinovski, N., Hall, R.I. and Wolfe, B.B., Epiphytic diatoms as flood indicators, J. Paleolimnol., 2010, vol. 44, no. 1, pp. 25–42.CrossRefGoogle Scholar
  4. 4.
    Cattaneo, A. and Amireault, M.C., How artificial are artificial substrata for periphyton?, J. North Am. Benthol. Soc., 1992, vol. 11, no. 1, pp. 244–256.CrossRefGoogle Scholar
  5. 5.
    Brown, H.D., A comparison of the attached algal communities of a natural and an artificial substrate, J. Phycol., 1976, vol. 12, no. 3, pp. 301–306.Google Scholar
  6. 6.
    Weitzel, R.L., Methods and Measurements of Periphyton Communities: A Review, Philadelphia: ASTM, 1979.CrossRefGoogle Scholar
  7. 7.
    Wetzel, R.G., Attached algal–substrata interactions: fact or myth, and when and how?, in Periphyton of Freshwater Ecosystems, Wetzel, R.G., Ed., The Hague: Dr. W. Junk Publ., 1983, pp. 207–215.CrossRefGoogle Scholar
  8. 8.
    Danilov, R. A. and Ekelund, N. G. A., Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status, J. Microbiol. Methods, 2001, vol. 45, no. 3, pp. 167–170.CrossRefPubMedGoogle Scholar
  9. 9.
    Albay, M. and Akcaalan, R., Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey, Hydrobiologia, 2003, vol. 506, no. 1, pp. 531–540.CrossRefGoogle Scholar
  10. 10.
    Parfenova, V.V., Mal’nik, V.V., Boiko, S.M., Sheveleva, N.G., Logacheva, N.F., Evstigneeva, T.D., Suturin, A.N., and Timoshkin, O.A., Communities of hydrobionts developing at the water–rock interface in Lake Baikal, Russ. J. Ecol., 2008, vol. 39, no. 3, pp. 198–204.CrossRefGoogle Scholar
  11. 11.
    Zhang, N., Li, H., Jeppesen, E. and Li, W., Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lake, Hydrobiologia, 2013, vol. 710, no. 1, pp. 129–141.CrossRefGoogle Scholar
  12. 12.
    Potapova, M. G. and Charles, D. F., Choice of substrate in algae-based water-quality assessment, J. North Am. Benthol. Soc., 2005, vol. 24, no. 2, pp. 415–427.CrossRefGoogle Scholar
  13. 13.
    Szilágyi, F., Ács, É., Borics, G., Halasi-Kovács, B., Juhász, P., Kiss, B., Kovács, T., Müller, Z., Lakatos, G., Padisák, J., Pomogyi, P., Stenger-Kovács, C., Szabó, K.É., Szalma, E. and Tóthmérész, B., Application of water framework directive in Hungary: Development of biological classification systems, Water Sci. Technol., 2008, 58, no. 11, pp. 2117–2125.CrossRefPubMedGoogle Scholar
  14. 14.
    Mickovic, B., Nikcevic, M., Grozdic, T., Pucar, M., Hegediš, A., and Gacic, Z., Ecological potential assessment of Sava Lake based on fish community composition: Preliminary results, Water Res. Manag., 2014, vol. 4, no. 3, pp. 21–25.Google Scholar
  15. 15.
    Standard Methods for the Examination of Water and Wastewater, 19th ed., Washington, DC: Am. Public Health Assoc., 1995.Google Scholar
  16. 16.
    ISO 10260, Water Quality: Measurement of Biochemical Parameters–Spectrometric Determination of the Chlorophyll-a Concentrations. Geneva: International Organization for Standardization, 1992.Google Scholar
  17. 17.
    Ahn, C.H., Song, H.M., Lee, S., Oh, J.H., Ahn, H., Park, J.R., Lee, J.M. and Joo, J.C., Effects of water velocity and specific surface area on filamentous periphyton biomass in an artificial stream mesocosm, Water, 2013, vol. 5, no. 4, pp. 1723–1740.CrossRefGoogle Scholar
  18. 18.
    Dahl, J. and Greenberg, L., Effects of prey dispersal on predator–prey interactions in streams, Freshw. Biol., 1999, vol. 41, pp. 771–780.CrossRefGoogle Scholar
  19. 19.
    ter Braak, C.J.F. and Šmilauer, P., CANOCO Reference Manual and User’s Guide: Software for Ordination, Version 5.0, Ithaca, NY: Microcomputer Power, 2012.Google Scholar
  20. 20.
    Scholz, O. and Boon, P. I., Biofilm development and extracellular enzyme activities on wood in billabongs of south-eastern Australia, Freshw. Biol., 1993, vol. 30, vol. 3, pp. 359–368.CrossRefGoogle Scholar
  21. 21.
    Wilson, C.R., Sauer, J. and Hooser, S.B., Taxines: A review of the mechanism and toxicity of yew (Taxus spp.) alkaloids, Toxicon, 2001, vol. 39, pp. 175–185.CrossRefPubMedGoogle Scholar
  22. 22.
    Loferski, J.R., Technologies for wood preservation in historic preservation, Arch. Mus. Informat., 1999, vol. 13, no. 3, pp. 273–290.CrossRefGoogle Scholar
  23. 23.
    Kralj, K., Plenkovic-Moraj, A., Gligora, M., Primc-Habdija, B., and Šipoš, L., Structure of periphytic community on artificial substrata: Influence of depth, slide orientation and colonization time in karstic Lake Visovacko, Croatia, Hydrobiologia, 2006, vol. 560, no. 1, pp. 249–258.CrossRefGoogle Scholar
  24. 24.
    Biggs, B. J. F. and Kilroy, C., Stream Periphyton Monitoring Manual, Christchurch: NIWA, 2000.Google Scholar
  25. 25.
    Sanchez, M.L., Perez, G.L., Izaguirre, I. and Pizarro. H., Influence of underwater light climate on periphyton and phytoplankton communities in shallow lakes from the Pampa plain (Argentina) with contrasting steady states, J. Limnol., 2013, vol. 72, no. 1, pp. 62–78.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Ivana Trbojević
    • 1
  • Jelena Jovanović
    • 4
  • Dušan Kostić
    • 2
  • Slađana Popović
    • 3
  • Dragana Predojević
    • 1
  • Vesna Karadžić
    • 4
  • Gordana Subakov Simić
    • 1
  1. 1.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Jaroslav Černi Institute for the Development of Water ResourcesBelgradeSerbia
  3. 3.Department of Ecology and Technoeconomics, Institute of Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Institute of Public Health of Serbia “Dr Milan Jovanović Batut“BelgradeSerbia

Personalised recommendations