Russian Journal of Ecology

, Volume 48, Issue 3, pp 240–244 | Cite as

Ecological role of lipids and fatty acids in the early postembryonic development of the daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen in winter

  • S. N. Pekkoeva
  • S. A. Murzina
  • Z. A. Nefedova
  • P. O. Ripatti
  • S. Falk-Petersen
  • J. Berge
  • O. Lonne
  • N. N. Nemova


The dynamics of lipid and fatty acid composition of the muscles (flesh) and lipid sac in L. maculatus early life stages of different age collected in Kongsfjorden (Svalbard, Norway), in winter, during the polar night was studied. We showed that the total lipid content in the muscles increases on account of energetic triacylglycerols derived from the lipid sac, which is resorbed in juveniles as they switch to a demersal mode of life. The fatty acid spectrum directly reflects age-dependent and seasonal features of L. maculatus early life stages. The results of the study elucidate the specific role of lipids and fatty acids in the ecological and biochemical mechanisms related to ontogenic development of fish from the family Stichaeidae, particularly arctic-boreal L. maculatus, which assumed to become increasingly frequent in the Spitsbergen water area. They are important for understanding the ability of organisms to maintain and preserve the functional stability of ecosystems as a whole, especially under conditions of climate change in the Arctic.


Arctic ecosystems adaptations daubed shanny development lipids fatty acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andriyashev, A.P., Ryby severnykh morei SSSR (Fishes of the Northern Seas of the Soviet Union), Moscow, 1954.Google Scholar
  2. 2.
    Mecklenburg, C.W. and Sheiko, B.A., Family Stichaeidae Gill 1864, Pricklebacks, Calif. Acad. Sci. Annotated Checklists of Fishes, 2004, no. 35, pp. 1–36.Google Scholar
  3. 3.
    Meyer Ottesen, C.A., Haakon, H., Schou Christiansen, J., and Falk-Petersen, S., Early life history of the daubed shanny (Teleostei: Lepticlinus maculatus) in Svalbard waters, Mar. Biodiv., 2011, vol. 41, no. 3, pp. 383–394.CrossRefGoogle Scholar
  4. 4.
    Falk-Petersen, S., Hopkins, C.E., and Sargent, J.R., Trophic relationships in the pelagic, arctic food web, in Trophic Relationships in the Marine Environment, Aberdeen: Aberdeen Univ. Press, 1990, pp. 315–333.Google Scholar
  5. 5.
    Murzina, S.A., Falk-Petersen, S., and Nemova, N.N., Lipids in the arctic fish, Leptoclinus maculatus larvae, Chem. Phys. Lipids, 2008, vol. 154 (Suppl.), p. S26.CrossRefGoogle Scholar
  6. 6.
    Murzina, S.A., Meyer Ottesen, C.A., Falk-Petersen, S., et al., Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters, Fish Physiol.Biochem., 2012, vol. 38, no. 5, pp. 1393–1407.CrossRefPubMedGoogle Scholar
  7. 7.
    Murzina, S.A., Nefedova, Z.A., Falk-Petersen, S., et al., Lipids in the Arctic fish Leptoclinus maculatus in Svalbard, Polar Biol., 2013a, vol. 36, no. 11, pp. 1619–1631.CrossRefGoogle Scholar
  8. 8.
    Murzina, S.A., Nefedova, Z.A., Ripatti, P.O., et al., Lipid status of the two high latitude fish species, Leptoclinus maculatus and Lumpenus fabricii, Int. J. Mol. Sci., 2013b, vol. 14, no. 4, pp. 7048–7060.CrossRefPubMedGoogle Scholar
  9. 9.
    Murzina, S.A., Nefedova, Z.A., and Nemova, N.N., Effect of fatty acids (markers of fish food sources) on mechanisms of adaptation to high-latitude conditions: A review, Tr. Karel. Nauch. Tsentra Ross. Akad. Svi., Ser. Eksp. Biol., 2012, no. 2, pp. 18–25.Google Scholar
  10. 10.
    Falk-Petersen, S., Falk-Petersen, I.-B., and Sargent, J.R., Structure and function of an unusual lipid storage organ in the Arctic fish Lumpenus maculatus Fries, 1838, Sarsia, 1986, no. 71, pp. 1–6.Google Scholar
  11. 11.
    Nefedova, Z.A., Ruokolainen, T.R., Vasil’eva, O.B., et al., Special traits of tissue lipids of whitefish Coregonus lavaretus living in water bodies with different anthropogenous load, J. Ichthyol. (Moscow), 2007, vol. 47, no. 1, pp. 100–105.CrossRefGoogle Scholar
  12. 12.
    Murzina, S.A., Nefedova, Z.A., Ruokolainen, T.R., et al., Dynamics of lipid content during early development of freshwater salmon Salmo salar L., Russ. J. Dev. Biol., 2009, vol. 40, no. 3, pp. 165–170.CrossRefGoogle Scholar
  13. 13.
    Perevozchikov, A.P., Sterols and their transport in animal development, Russ. J. Dev. Biol., 2008, vol. 39, no. 3, pp. 131–150.CrossRefGoogle Scholar
  14. 14.
    Murzina, S.A., Role of lipids and their fatty acid components in biochemical adaptations of the daubed shanny, Leptoclinus maculatus F., from the northwestern Spitsbergen coast, Cand. Sci. (Biol.) Dissertation, Petrozavodsk, 2010.Google Scholar
  15. 15.
    Nemova, N.N., Murzina, S.A., Nefedova, Z.A. et al., Lipid status of larvae and adults of the White Sea herring, Dokl. Biochem. Biophys., 2015a, vol. 460, no. 1, pp. 37–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Nemova, N.N., Nefedova, Z.A., Murzina, S.A., et al., The effect of environmental conditions on the dynamics of fatty acids in juveniles of the Atlantic salmon (Salmo salar L.), Russ. J. Ecol., 2015b, vol. 46, no. 3, pp. 267–271.CrossRefGoogle Scholar
  17. 17.
    Sabates, A., Rossi, S., and Reyes, E., Lipid content in the early life stages of thee mesopelagic fishes, J. Fish Biol., 2003, no. 63, pp. 1–11.Google Scholar
  18. 18.
    Lee, R., Hagen, W., and Kattner, G., Lipid storage in marine zooplankton, Mar. Ecol. Progr. Ser., 2006, no. 307, pp. 273–306.CrossRefGoogle Scholar
  19. 19.
    Lapin, V.I. and Shatunovskii, M.I., Fish lipids: Specific features of composition, physiological and ecological significance, Usp. Sovrem. Biol., 1981, vol. 92, no. 6, pp. 380–394.Google Scholar
  20. 20.
    Tocher, D.R., Metabolism and functions of lipids and fatty acids in teleost fish, Rev. Fish. Sci., 2003, no. 11, pp. 107–184.CrossRefGoogle Scholar
  21. 21.
    Coutteau, P., Geurden, I., Camara, M.R., et al., Review on the dietary effects of phospholipids in fish and crustacean larviculture, Aquaculture, 1997, no. 155, pp. 149–164.CrossRefGoogle Scholar
  22. 22.
    Kanazawa, A., Teshima, S., Kobayashi, T., et al., Necessity of phospholipids for growth of the larval ayu, Mem. Facul. Fish. Kagoshima Univ., 1983, no. 32, pp. 115–120.Google Scholar
  23. 23.
    Tocher, D.R., Bendiksen, E., Campbell, P., and Bell, J., The role of phospholipids in nutrition and metabolism of teleost fish, Aquaculture, 2008, no. 280, pp. 21–34.CrossRefGoogle Scholar
  24. 24.
    Cahu, C., Gisbert, E., Villeneuve, L., et al., Influence of dietary phospholipids on early ontogenesis of fish, Aquacult. Res., 2009, vol. 40, no. 9, pp. 989–999.CrossRefGoogle Scholar
  25. 25.
    Lloret, J., Shulman, G., and Malcolm Love, R., Conditions and Health Indicators of Exploited Marine Fish, Wiley–Blackwell, 2014.Google Scholar
  26. 26.
    Sergeeva, M.G. and Varfolomeeva, A.T., Kaskad arakhidonovoi kisloty (The Arachidonic Acid Cascade), Moscow: Narodnoe Obrazovanie, 2006.Google Scholar
  27. 27.
    Smith, W.L. and Murphy, R.C., The eicosanoids: Cyclooxygenase, lipoxygenase and epoxygenase pathways, in Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E., Eds., Amsterdam: Elsevier, 2003, pp. 341–371.Google Scholar
  28. 28.
    Bell, M., Batty, R., Dick, J., et al., Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.), Lipids, 1995, no. 30, pp. 443–449.CrossRefPubMedGoogle Scholar
  29. 29.
    Toivonen, L.V., Nefedova, Z.A., Sidorov, V.S., and Yurovitskii, Yu.G., Age-related features of cataractogenesis in salmon fry: 2. Biochemical features of lens during cataractogenesis, Russ. J. Dev. Biol., 2004, vol. 35, no. 1, pp. 49–56.CrossRefGoogle Scholar
  30. 30.
    Hwang, D., Fatty acids and immune responses: A new perspective in searching for clues to mechanisms, Annu. Rev. Nutr., 2000, vol. 20, pp. 431–456.CrossRefPubMedGoogle Scholar
  31. 31.
    Graeve, M., Lundberg, M., Boer, M., et al., The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius, 1780), Mar. Biol., 2008, no. 153, pp. 643–651.CrossRefGoogle Scholar
  32. 32.
    Murzina, S.A., Nemova, N.N., Nefedova, Z.A., and Falk-Petersen, S., Effects of ecological conditions on lipid composition of the liver and muscles in the daubed shanny Leptoclinus maculatus, Russ. J. Ecol., 2010, vol. 41, no. 1, pp. 51–54.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. N. Pekkoeva
    • 1
  • S. A. Murzina
    • 1
  • Z. A. Nefedova
    • 1
  • P. O. Ripatti
    • 1
  • S. Falk-Petersen
    • 2
  • J. Berge
    • 3
    • 4
  • O. Lonne
    • 3
    • 4
  • N. N. Nemova
    • 1
  1. 1.Institute of Biology, Karelian Scientific CenterRussian Academy of SciencesPetrozavodskRussia
  2. 2.Akvaplan-niva ASFram CentreTromsøNorway
  3. 3.The Arctic University of Norway (UiT)TromsøNorway
  4. 4.The University Centre in Svalbard (UNIS)LongyearbyenNorway

Personalised recommendations