Russian Journal of Ecology

, Volume 47, Issue 4, pp 383–391 | Cite as

Assessment of nonselective elimination effects in rodent communities by methods of geometric morphometrics

  • A. G. Vasil’evEmail author
  • V. N. Bol’shakov
  • I. A. Vasil’eva
  • N. G. Evdokimov
  • N. V. Sineva


Methods of geometric morphometrics and population phenogenetics have been used to evaluate morphogenetic rearrangements in two sympatric species of Myodes voles (M. glareolus Schreb. 1780 and M. rutilus Pall. 1779) from syntopic populations recovering after exposure to local “ecological vacuum” created as a result of rodent extermination in a natural focus of hemorrhagic fever in the southern taiga subzone of the Udmurt Republic. The model used in the study simulates the situation that arises upon nonselective elimination of rodent populations and communities in spring and their subsequent recovery. Analysis of variation in the size and shape of the mandible and in a complex of 30 nonmetric cranial characters has revealed similar (parallel) and species-specific morphogenetic and epigenetic changes occurring during the recovery of local rodent community. Species-specific differences in the pattern of change in the parameter characterizing within-group morphological disparity in the mandible shape (MNND) have been revealed between the dominant species (M. glareolus) and the subdominant species competing with it for territory (M. rutilus). Different reactions of close Myodes species in the course of filling the ecological vacuum are considered as a result of reduction in the level of competition for the subdominant species and a compensatory increase of morphological disparity in the dominant species under conditions of low density and incomplete composition of the community, in accordance with Chernov’s (2005) ecological compensation principle.


nonselective elimination rodents variation Chernov’s compensation principle geometric morphometrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, R.J. and Searle, A.G., Epigenetic polymorphism of the rodent skeleton, Proc. Zool. Soc. London, 1963, vol. 140, pp. 557–615.Google Scholar
  2. Bol’shakov, V.N. and Vasil’ev, A.G., A comparative study of insular and continental populations on the northern redbacked vole, Clethrionomys rutilus Pall.: A probable role of the “founder principle,” Zh. Obshch. Biol., 1976, vol. 37, no. 3, pp. 378–385.Google Scholar
  3. Bol’shakov, V.N., Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals, Russ. J. Ecol., 2015, vol. 46, no. 4, pp. 339–344.CrossRefGoogle Scholar
  4. Chernov, Yu.I., Species diversity and compensatory phenomena in communities and biological systems, Zool. Zh., 2005, vol. 84, no. 10, pp. 1221–1238.Google Scholar
  5. Duncan, E.J., Gluckman, P.D., and Dearden, P.K., Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype?, J. Exp. Zool. B: Mol. Dev. Evol., 2014, vol. 322B, pp. 208–220.Google Scholar
  6. Evdokimov, N.G., Studies on mechanisms of abundance recovery in an artificially thinned rodent population of forest biocenosis, in Populyatsionnaya ekologiya i izmenchivost’ zhivotnykh (Animal Population Ecology and Variation), Sverdlovsk: Ural. Nauch. Tsentr Akad. Nauk SSSR, 1979, pp. 84–95.Google Scholar
  7. Hammer, Ø., New statistical methods for detecting point alignments, Comput. Geosci., 2009, vol. 35, no. 3, pp. 659–666.CrossRefGoogle Scholar
  8. Hammer, Ø., Harper, D.A.T. and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1.Google Scholar
  9. Hutchinson, G.E., A Treatise on Limnology, New York: Wiley, 1967.Google Scholar
  10. Jablonka, E. and Raz, G., Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution, Quart. Rev. Biol., 2009, vol. 84, pp. 131–176.Google Scholar
  11. Koshkina, T.V., Okulova, N.M., and Aristova, V.A., Territorial relationships in rodents and their role in population density regulation, in Osnovnye problemy teriologii (Basic Problems in Theriology), Tr. Mosk. O-va Ispyt. Prir., Otd. Biol., no. 48, Moscow: Nauka, 1972, pp. 215–237.Google Scholar
  12. Ledón-Rettig, C.C., Ecological epigenetics: An introduction to the symposium, Integr. Comp. Biol., 2013, vol. 53, no. 2, pp. 307–318.CrossRefPubMedGoogle Scholar
  13. Lee, Y.S., Markov, N., Voloshina, I., and Argunov, A., Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia, BMC Genet., 2015, vol. 16, no. 100, pp. 1–15.Google Scholar
  14. Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, pp. 353–357.CrossRefPubMedGoogle Scholar
  15. Mayr, E., Animal Species and Evolution, Harvard: Harvard Univ. Press, 1963. Translated under the title Zoologicheskii vid i evolyutsiya, Moscow: Mir, 1968.CrossRefGoogle Scholar
  16. Nei, M., Maruyama, T., and Chakraborty, R., The bottleneck effect and variability in populations, Evolution, 1975, vol. 29, pp. 1–10.CrossRefGoogle Scholar
  17. Nikolaev, I.I., Taxocene as an ecological category, Ekologiya, 1977, no. 5, pp. 50–55.Google Scholar
  18. Rohlf, F.J., TpsUtil, File Utility Program, Version 1.60, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013a.Google Scholar
  19. Rohlf, F.J., TpsDig2, Digitize Landmarks and Outlines, Version 2.17, Stony Brook, NY: Department of Ecology and Evolution, State University of New York, 2013b.Google Scholar
  20. Rohlf, F.J. and Slice, D., Extension of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 1990, vol. 39, no. 1, pp. 40–59.CrossRefGoogle Scholar
  21. Salamin, N., Wüest R.O., Lavergne, S., et al., Assessing rapid evolution in a changing environment, Trends Ecol. Evol., 2010, vol. 25, no. 12, pp. 692–698.CrossRefPubMedGoogle Scholar
  22. Saul, W.-C. and Jeschke, J.M., Eco-evolutionary experience in novel species interactions, Ecol. Lett., 2015, vol. 18, pp. 236–245.CrossRefPubMedGoogle Scholar
  23. Saul, W.-C., Jeschke, J.M., and Heger, T., The role of ecoevolutionary experience in invasion success, NeoBiota, 2013, vol. 17, pp. 57–74.CrossRefGoogle Scholar
  24. Sheets, H.D. and Zelditch, M.L., Studying ontogenetic trajectories using resampling methods and landmark data, Hystrix: Ital. J. Mammal., 2013, vol. 24, no. 1, pp. 67–74.Google Scholar
  25. Shvarts, S.S., Evolyutsionnaya ekologiya zhivotnykh: ekologicheskie mekhanizmy evolyutsionnogo protsessa (Evolutionary Ecology of Animals: Ecological Mechanisms of the Evolutionary Process), Sverdlovsk: Ural Fil. Akad, Nauk SSSR, 1969.Google Scholar
  26. Timofeeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (A Brief Essay on the Theory of Evolution), Moscow: Nauka, 1969.Google Scholar
  27. Vasil’ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Bases of Phenetics: On the Way to Population Meronomy), Yekaterinburg: Akademkniga, 2005.Google Scholar
  28. Vasil’ev, A.G. and Vasil’eva, I.A., Gomologicheskaya izmenchivost’ morfologicheskikh struktur i epigeneticheskaya divergentsiya taksonov: osnovy populyatsionnoi meronomii (Homological Variation of Morphological Structures and Epigenetic Divergence of Taxa: Bases of Population Meronomy), Moscow: KMK, 2009.Google Scholar
  29. Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled technogenic morphological variation of two sympatric rodent species in the zone of influence from the Eastern Ural Radioactive Trace, Vopr. Radiats. Bezopasn., 2013, no. 4, pp. 4–13.Google Scholar
  30. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. G. Vasil’ev
    • 1
    Email author
  • V. N. Bol’shakov
    • 1
  • I. A. Vasil’eva
    • 1
  • N. G. Evdokimov
    • 1
  • N. V. Sineva
    • 1
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations