Russian Journal of Ecology

, Volume 47, Issue 4, pp 349–354 | Cite as

Effects of climate change on the distribution of endemic Ferula xylorhachis Rech.f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models

  • Alemeh Mazangi
  • Hamid Ejtehadi
  • Omid Mirshamsi
  • Fereshte Ghassemzadeh
  • Seyyed Saeed Hosseinianyousefkhani


Ferula xylorhachis Rech.f. is an endemic plant species belonging to the Apiaceae family and distributed in northeastern Iran. In the present study, we attempted to determine the factors with the greatest effects on the distribution of this species and to determine suitable regions for it based on current and future conditions. The Maximum Entropy method was used in the present study and the results indicated that the Mean Temperature of Wettest Quarter (48.2%), Precipitation of Wettest Quarter (49.1%), and Precipitation of Wettest Month (61.4%) are the most important factors in the current and in two future periods (2040 and 2070). The models suggest that suitable regions for the presence of this species will change over time and that the species will encounter limitations through changes such as moisture reduction. According to the A1B scenario, increases in greenhouse gases such as CO2 and CH4 will have direct effects on future precipitation and temperature and these factors will be important in determining species dispersion. Evaluation of important habitat factors using normal ecological methods will help in developing the best conservation programs in the future. Introducing species to new regions will help to protect them from the extinction risk caused by climate change.


modelling Ferula xylorhachis global warming northeast Iran 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araujo, M.B. and Guisan, A., Five (or so) challenges for species distribution modelling, J. Biogeogr., 2006, vol. 33, pp. 1677–1688.CrossRefGoogle Scholar
  2. Ardestani, E.G., Tarkesh, M., Bassiri, M., Vahabi, M.R., Potential habitat modeling for reintroduction of three native plant species in central Iran, J. Arid Land, 2015, vol. 7, no. 3, pp. 381–390.CrossRefGoogle Scholar
  3. Buckley, B.M., Anchukaitis, K.J., Penny, D., Fletcher, R., Cook, E.R., Sano, M., Wichienkeeo, A., Minh, T.T., and Hong, T.M. Climate as a contributing factor in the demise of Angkor, Cambodia, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 6748–6752.Google Scholar
  4. Chamberlain, D., Rechinger, K., and Rechinger, K., Ferula L. Umbelliferae, Flora Iranica, 1987, vol. 162, pp. 387–426.Google Scholar
  5. Chen, X. and Liu, Q., Luteolin glycosides as taxonomic markers in Ferula and related genera, Biochem. Syst. Ecol., 1989, vol. 17, pp. 309–310.CrossRefGoogle Scholar
  6. Drude, C.G.O. (1897–1898). Umbelliferae, in Die natürlichen Pflanzenfamilien, vol. 3, Engler, A. and Prantl, K., Eds., 1997, pp. 63–250.Google Scholar
  7. Elith, J. and Leathwick, J.R., Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 2009, vol. 40, pp. 677–697.CrossRefGoogle Scholar
  8. Elith, J., Graham, C.H., Anderson R.P., Dudík, M., Ferrier, S., Guisan, A.J., Hijmans, R., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Bette, A., Loiselle, B.A., Manion, G., Moritz, C., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 2006, vol. 29, no. 1, pp. 129–151.CrossRefGoogle Scholar
  9. Elith. J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J., A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 2011, vol. 17, pp. 43–57.CrossRefGoogle Scholar
  10. Evans, J.P., 21st century climate change in the Middle East, Climatic Change, 2009, vol. 92, pp. 417–432.CrossRefGoogle Scholar
  11. Funk V. and Richardson. K., Systematic data in biodiversity studies: Use it or lose it, Syst. Biol., 2002, vol. 51, pp. 303–316.CrossRefPubMedGoogle Scholar
  12. Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., and Moritz, C., Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs, Evolution, 2004, vol. 58, pp. 1781–1793.CrossRefPubMedGoogle Scholar
  13. Guisan, A., Graham, C.H., Elith, J., and Huettmann, F., Sensitivity of predictive species distribution models to change in grain size, Divers. Distrib., 2007, vol. 13, pp. 332–340.CrossRefGoogle Scholar
  14. Hernandez, P.A., Graham, C.H., Master, L.L., and Albert, D.L., The effect of sample size and species characteristics on performance of different species distribution modeling methods, Ecography, 2006, vol. 29, pp. 773–785.CrossRefGoogle Scholar
  15. Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N., Ecological- niche factor analysis: How to compute habitat-suitability maps without absence data?, Ecology, 2002, vol. 83, pp. 2027–2036.CrossRefGoogle Scholar
  16. Hosseini, S., Kappas, M., Chahouki, M.Z., Gerold, G., Erasmi, S., and Emam, A.R., Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics, Ecol. Inform., 2013, vol. 18, pp. 61–68.Google Scholar
  17. Hosseinian Yousefkhani, S.S., Ficetola, G.F., Rastegar-Pouyani, N., Ananjeva, N.B., Rastegar-Pouyani, E., and Masroor, R., Environmental suitability and distribution of the Caucasian Rock Agama, Paralaudakia caucasia (Sauria: Agamidae) in western and central Asia, Asian Herpetol. Res., 2013, vol. 4, pp. 207–213.Google Scholar
  18. Korovin, E., Koroleva, K., Krishtofovitch, A., Mandenova, I., Poyarkova, A., and Shishkin, B., Umbelliferae, Flora SSSR (Flora of the Soviet Union), vol. 17, Moscow: Akad. Nauk SSSR, 1951.Google Scholar
  19. Kozak, K.H. and Wiens, J., Does niche conservatism promote speciation? A case study in North American salamanders, Evolution, 2006, vol. 60, pp. 2604–2621.CrossRefPubMedGoogle Scholar
  20. Kraxner, F. and Nordström, E.-M., Bioenergy futures: A global outlook on the implications of land use for forestbased feedstock production, in The Future Use of Nordic Forests, Springer, 2015, pp. 63–81.Google Scholar
  21. Kumar, S. and Stohlgren, T.J., Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia, J. Ecol. Nat. Environ., 2009, vol. 1, pp. 094–098.Google Scholar
  22. Kurzyna-Mlynik, R., Oskolski, A.A., Downie, S.R., Kopacz, R., Wojewódzka, A., and Spalik, K., Phylogenetic position of the genus Ferula (Apiaceae) and its placement in tribe Scandiceae as inferred from nrDNA ITS sequence variation, Plant Syst. Evol., 2008, vol. 274, pp. 47–66.CrossRefGoogle Scholar
  23. Lepš, J., What do the biodiversity experiments tell us about consequences of plant species loss in the real world?, Basic Appl. Ecol., 2004, vol. 5, pp. 529–534.CrossRefGoogle Scholar
  24. Menglan, S., Fading, P., Zehui, P., Watson, M.F., Cannon, J.F., Holmes-Smith, I., Kljuykov, E.V., Phillippe, L.R., and Pimenov, M.G., Apiaceae (Umbelliferae), Flora of China, 2005, vol. 14, pp. 1–205.Google Scholar
  25. Munoz, D.G., Neumann, M., Kusaka, H., Yokota, O., Ishihara, K., Terada, S., Kuroda, S, Mackenzie, I.R., FUS pathology in basophilic inclusion body disease, Acta Neuropathol., 2009, vol. 118, pp. 617–627.CrossRefPubMedGoogle Scholar
  26. Ortega-Huerta, M.A. and Peterson, A.T., Modeling ecological niches and predicting geographic distributions: A test of six presence-only methods, Rev. Mexicana Biodivers., 2008, vol. 79, pp. 205–216.Google Scholar
  27. Pearson, R.G., Species’ distribution modeling for conservation educators and practitioners, Lessons Conserv., 2010, vol. 3, pp. 54–89.Google Scholar
  28. Pesmen, H. and Davis, P., Potentilla L., in Flora of Turkey and the East Aegean Islands, vol. 4, 1972, pp. 41–68.Google Scholar
  29. Peterson, A.T., Ecological Niches and Geographic Distributions (MPB-49), Princeton, NJ: Princeton Univ. Press, 2011.Google Scholar
  30. Peterson, A.T., Martínez-Meyer, E., and González-Salazar, C., Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae), Divers. Distrib., 2004, vol. 10, pp. 237–246.CrossRefGoogle Scholar
  31. Peterson, E.E., Theobald, D.M., and Ver Hoef, J.M., Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow, Freshw. Biol., 2007, vol. 52, pp. 267–279.CrossRefGoogle Scholar
  32. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, nos. 3–4, pp. 231–259.CrossRefGoogle Scholar
  33. Pimenov, M.G. and Leonov, M., The Genera of the Umbelliferae: A Nomenclator, Kew: Royal Botanic Gardens, 1993.Google Scholar
  34. Pimenov, M. and Leonov, M., The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South- West Asian taxa, Turk. J. Bot., 2004, vol. 28, pp. 139–145.Google Scholar
  35. Roberts, N., Eastwood, W.J., Kuzucuoglu, C., Fiorentino, G., and Caracuta, V., Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition, The Holocene, 2011, vol. 21, pp. 147–162.Google Scholar
  36. Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L., Estrella, N., and Seguin, B., Attributing physical and biological impacts to anthropogenic climate change, Nature, 2008, vol. 453, pp. 353–357.CrossRefPubMedGoogle Scholar
  37. Sillero, N., What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods, Ecol. Model., 2011, vol. 222, pp. 1343–1346.CrossRefGoogle Scholar
  38. Soons, M.B., Wind dispersal in freshwater wetlands: Knowledge for conservation and restoration, Appl. Veget. Sci., 2006, vol. 9, pp. 271–278.CrossRefGoogle Scholar
  39. Spalik, K., Wojewódzka, A., and Downie, S., Delimitation of genera in Apiaceae with examples from Scandiceae subtribe Scandicinae, Edinb. J. Bot., 2001a, vol. 58, pp. 331–346.CrossRefGoogle Scholar
  40. Spalik, K., Wojewódzka, A., and Downie, S.R., The evolution of fruit in Scandiceae subtribe Scandicinae (Apiaceae), Can. J. Bot., 2001b, vol. 79, pp. 1358–1374.Google Scholar
  41. Spalik, K., Reduron, J.-P., and Downie, S., The phylogenetic position of Peucedanum sensu lato and allied genera and their placement in tribe Selineae (Apiaceae, subfamily Apioideae), Plant Syst. Evol., 2004, vol. 243, pp. 189–210.CrossRefGoogle Scholar
  42. Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E., Daunizeau, J., and Friston, K.J., Ten simple rules for dynamic causal modeling, Neuroimage, 2010, vol. 49, pp. 3099–3109.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L., Extinction risk from climate change, Nature, 2004, vol. 427, pp. 145–148.CrossRefPubMedGoogle Scholar
  44. Thuiller, W., Patterns and uncertainties of species’ range shifts under climate change, Global Change Biol., 2004, vol. 10, pp. 2020–2027.CrossRefGoogle Scholar
  45. Turner, D. and Williams, D.D., Invertebrate movements within a small stream: Density dependence or compensating for drift?, Int. Rev. Hydrobiol., 2000, vol. 85, pp. 141–156.CrossRefGoogle Scholar
  46. Warren, D.L., In defense of “niche modeling,” Trends Ecol. Evol., 2012, vol. 27, pp. 497–500.Google Scholar
  47. Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., and Guisan, A., Effects of sample size on the performance of species distribution models, Divers. Distrib., 2008, vol. 14, pp. 763–773.CrossRefGoogle Scholar
  48. Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., and Roy, P.S., Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L., in Lesser Himalayan foothills, Ecol. Engin., 2013, vol. 51, pp. 83–87.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Alemeh Mazangi
    • 1
  • Hamid Ejtehadi
    • 1
  • Omid Mirshamsi
    • 1
    • 2
  • Fereshte Ghassemzadeh
    • 1
  • Seyyed Saeed Hosseinianyousefkhani
    • 1
  1. 1.Department of Biology, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Institute of Applied Zoology, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations