Russian Journal of Ecology

, Volume 46, Issue 4, pp 339–344 | Cite as

Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals

  • V. N. Bol’shakov
  • A. G. Vasil’ev
  • I. A. Vasil’eva
  • Yu. V. Gorodilova
  • M. V. Chibiryak


Using geometric morphometric methods, coupled biotopic variation in the shape of the mandible was revealed in cenopopulations of two sympatric rodent species, the pygmy wood mouse (Sylvaemus uralensis Pall., 1811) and bank vole (Myodes glareolus Schreb., 1780), in the Southern Urals. As a rule, heterospecific pairs from syntopic samples synchronously taken in cenopopulations of the two species inhabiting contrasting local biotopes displayed similar (parallel and unidirectional) morphological changes. In an unusually arid year, however, differently directed morphogenetic responses were revealed in young of the year from cenopopulations of the two species in broadleaf forest outliers surrounded by steppe vegetation on tops of the Guberlya low hills. Such a local disturbance of the coupled pattern of biotopic variation in S. uralensis and M. glareolus cenopopulations under ambient conditions sharply deviating from the optimum may be evidence for depletion of their coevolutionary adaptive potential, which is estimated from the range of ecological conditions at which parallelism in the variation of sympatric species is observed.


evolutionary ecology geometric morphometrics biotopic variation rodents sympatric species cenopopulations coevolutionary potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bol’shakov, V.N. and Vasil’ev, A.G., Spatial structure and variation of bank vole population at the southern range boundary, in Populyatsionnaya izmenchivost’ zhivotnykh (Population Variation of Animals), Sverdlovsk, 1975, pp. 3–31.Google Scholar
  2. Bol’shakov, V.N., Vasil’ev, A.G., Vasil’eva, I.A., and Gorodilova, Yu.V., Evolutionary ecological analysis of coupled geographic variation of two sympatric rodent species in the Southern Urals, Russ. J. Ecol., 2013, vol. 44, no. 6. pp. 500–506.CrossRefGoogle Scholar
  3. Bukvareva, E.N. and Aleshchenko, G.M., Printsip optimal’nogo raznoobraziya biosistem (The Principle of Optimal Biosystem Diversity), Moscow: KMK, 2013.Google Scholar
  4. Chernov, Yu.I., Ekologiya i biogeografiya: izbr. raboty (Ecology and Bioogeography: Selected Works), Moscow: KMK, 2008.Google Scholar
  5. Drake, A.G. and Klingenberg, C.P., Large-scale diversification of skull shape in domestic dogs: Disparity and modularity, Am. Nat., 2010, vol. 175, no. 3, pp. 289–301.PubMedCrossRefGoogle Scholar
  6. Giller, P.S., Community Structure and the Niche, London: Chapman and Hall, 1984. Translated under the title Struktura soobshchestv i ekologicheskaya nisha, Moscow: Mir, 1988.Google Scholar
  7. Fominykh, M.A., Variation of cranial and morphological characters in inIzmenchivost' kranial’nykh in voles of the genus Clethrionomys in the Urals, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg, 2011.Google Scholar
  8. Gorodilova, Yu.V., Ecomorphological analysis of variation of the pygmy wood mouse and sympatric rodents in the Urals, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg: Inst. Plant Anim. Ecol., Ural Branch, Ross. Acad. Sci., 2011.Google Scholar
  9. Hammer, Ø, Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2001, vol. 4, no. 1.Google Scholar
  10. Hutchinson, G.E., A Treatise on Limnology: Introduction in Lake Biology and the Limnoplankton, New York: Wiley, 1967, vol. 2.Google Scholar
  11. Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Res., 2011, vol. 11, pp. 353–357.CrossRefGoogle Scholar
  12. Lyubarskii, E.L., Tsenopopulyatsiya i fitotsenoz (Cenopopulation and Phytocenosis), Kazan: Kazan. Gos. Univ., 1976.Google Scholar
  13. Mina, M.V. and Klevezal, G.A., Rost zhivotnykh (Animal Growth), Moscow: Nauka, 1976.Google Scholar
  14. Mouillot, D., Graham, N.A.J., Villéger, S., et al., A functional approach reveals community responses to disturbance, Trend Ecol. Evol., 2013, vol. 28, no. 3, pp. 167–177.CrossRefGoogle Scholar
  15. Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1978. Translated under the title Evolyutsionnaya ekologiya, Moscow: Mir, 1981.Google Scholar
  16. Rabotnov, T.A., Some problems in studies on cenotic populations, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1969, vol. 74, no. 1, pp. 141–149.Google Scholar
  17. Rohlf, F.J., TpsDig2, Digitize Landmarks and Outlines, Version 2.16, Stony Brook, NY: Dept. of Ecology and Evolution, State Univ. of New York at Stony Brook, 2013a.Google Scholar
  18. Rohlf, F.J., TpsUtil, File Utility Program, Version 2.15, Stony Brook, NY: Dept. of Ecology and Evolution, State Univ. of New York at Stony Brook, 2013b.Google Scholar
  19. Rohlf, F.J. and Slice, D., Extension of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 1990, vol. 39, no. 1, pp. 40–59.CrossRefGoogle Scholar
  20. Shvarts, S.S., Evolyutsionnaya ekologiya zhivotnykh: ekologicheskie mekhanizmy evolyutsionnogo protsessa (Evolutionary Ecology of Animals: Ecological Mechanisms of the Evolutionary Process), Sverdlovsk: Ural Fil Akad, Nauk SSSR, 1969.Google Scholar
  21. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Pattern of Evolution), Moscow: Nauka, 1980.Google Scholar
  22. Uranov, A.A., The age spectrum of phytocenopopulations as a function of time and wave energy processes, Biol. Nauki, 1975, no. 2, pp. 7–34..Google Scholar
  23. Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Relationship between morphological disparity and taxonomic diversity in rodent communities in the zone of influence from the Eastern Ural Radioactive Trace in the Southern Urals, Russ. J. Ecol., 2010, vol. 41, no. 2, pp. 153–158.CrossRefGoogle Scholar
  24. Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled technogenic morphological variation of two sympatric rodent species in the zone of influence from the Eastern Ural Radioactive Trace, Vopr. Radiats. Bezopasn., 2013, no. 4, pp. 4–13.Google Scholar
  25. Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., et al., The return of the variance: Intraspecific variability in community ecology, Trends Ecol. Evol., 2012, vol. 27, no. 4, pp. 244–252.PubMedCrossRefGoogle Scholar
  26. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., et al., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier, 2004.Google Scholar
  27. Zykov, S.V., Intraspecific variation and interspecific differentiation in cranial characters in mice of the genera Apodemus, Mus, and Sylvaemus in the Ural region, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg, 2011.Google Scholar
  28. Yablokov, A.V., Izmenchivost’ mlekopitayushchikh (Variability of Mammals), Moscow: Nauka, 1966.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. N. Bol’shakov
    • 1
  • A. G. Vasil’ev
    • 1
  • I. A. Vasil’eva
    • 1
  • Yu. V. Gorodilova
    • 1
  • M. V. Chibiryak
    • 1
  1. 1.Institute of Plant and Animal EcologyUral Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations