Russian Journal of Ecology

, Volume 46, Issue 3, pp 236–245 | Cite as

The toxicity of engineered nanoparticles on seed plants chronically exposed to low-level environmental radiation

  • E. Karimullina
  • E. Antonova
  • V. Pozolotina
  • A. Tokarev
  • S. Minko


Nothing is known about how plant populations chronically exposed to radiation adapt to a new anthropogenic stressor as engineered nanoparticles (ENP). A set of ecotoxicity tests was conducted with five types of ENP to investigate seed response of Leonurus quinquelobatus populations growing naturally under low-dose irradiation and background conditions. Five day toxicity tests detect the combined stimulation positive effects of irradiation stress with two types of ENP on seed germination. All of these effects are smoothed in 21 day old seedlings or reveal the significant adverse effects in three of the ENP. The commonly increased mutation load at the radiation pollution area synergistically increases fourfold to eightfold after TiO2 nanoparticle suspension exposure at 0.5–10 mM. These findings highlight the response on the combined nanoparticle and ionizing radiation influence on plant systems in the wild indicating that the environmental risk assessment of 4 of 5 ENP needs to be carried out.


Kyshtym accident radiation pollution engineered nanoparticles combine exposure non-human biota Leonurus quinquelobatus seed germination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonova, E.V., Karimullina, E.M., and Pozolotina, V.N., Intraspecific variation in Melandrium album along a radioactive contamination gradient at the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2013, vol. 44, no. 1, pp. 18–27.CrossRefGoogle Scholar
  2. Beresford, N., Brown, J., Copplestone, D., et al., D-ERICA: An Integrated Approach to the Assessment and Management of Environmental Risk from Ionizing Radiation. Description of Purpose, Methodology and Application. A Deliverable Report for the Project “ERICA” (Contract No. FI6R-CT-2004-508847) within the EC’s VI Framework Programme, Stockholm: Swedish Radiation Protection Authority, 2007.Google Scholar
  3. Brown, J.E., Alfonso, B., Avila, R., et al., The ERICA tool, J. Environ. Radioact., 2008, vol. 99, no. 9, pp. 1371–1383.CrossRefPubMedGoogle Scholar
  4. Burklew, C.E., Ashlock, J., Winfrey, W.B., and Zhang, B., Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum), PLoS ONE, 2012, vol. 7, no. 5, e34783.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Burlakova, E.B., Role of antioxidants in physical and chemical processes of cell reproduction regulation, in Fiziko-khimicheskie osnovy avtoregulyatsii v kletkakh (The Physical and Chemical Bases of Self-regulation in Cells), Moscow: Nauka, 1968.Google Scholar
  6. Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnoi Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka, 1993.Google Scholar
  7. Grime, J.P., Plant Strategies, Vegetation Processes, and Ecosystem Properties, Chichester: Wiley, 2006.Google Scholar
  8. Karimullina, E., Antonova, E., and Pozolotina, V., Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace, J. Environ. Radioact., 2013, vol. 124, pp. 113–120.CrossRefPubMedGoogle Scholar
  9. Klaine, S.J., Alvarez, P.J., Batley, G.E., et al., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1825–1851.CrossRefPubMedGoogle Scholar
  10. Kovalchuk, I., Abramov, V., Pogribny, I., et al., Molecular aspects of plant adaptation to life in the Chernobyl zone, Plant Physiol., 2004, vol. 135, no. 1, pp. 357–363.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Kurepa, J., Paunesku, T., Vogt, S., et al., Uptake and distribution of ultrasmall anatase TiO2 Alizarin Red S nanoconjugates in Arabidopsis thaliana, Nano Lett., 2010, vol. 10, no. 7, pp. 2296–2302CrossRefPubMedCentralPubMedGoogle Scholar
  12. Larsson, C.M., An overview of the ERICA integrated approach to the assessment and management of environmental risks from ionizing contaminants, J. Environ. Radioact., 2008, vol. 99, no. 9, pp. 1364–1370.CrossRefPubMedGoogle Scholar
  13. Lin, D. and Xing, B., Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth, Environ. Pollut., 2007, vol. 150, no. 2, pp. 243–250.CrossRefPubMedGoogle Scholar
  14. Lopez-Moreno, M.L., de la Rosa, G., Hernandez-Viezcas, J.A., et al., X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species, J. Agric. Food Chem., 2010, vol., 58, no. 6, pp. 3689–3693.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., and Haynes, C.L., Toxicity of engineered nanoparticles in the environment, Anal. Chem., 2013, vol., 85, no. 6, pp. 3036–3049.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Mazumdar, H. and Ahmed, G.U., Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiata, and Brassica campestris, Int. J. Adv. Biotechnol. Res., 2011, vol. 2, no. 4, pp. 404–413.Google Scholar
  17. Mirzajani, F., Askari, H., Hamzelou, S., et al., Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria, Ecotoxicol. Environ. Saf., 2013, vol. 88, pp. 48–54.CrossRefPubMedGoogle Scholar
  18. Molchanova, I., Mikhailovskaya, L., Antonov, K., et al., Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace, J. Environ. Radioact., 2014, vol. 138, pp. 238–248.CrossRefPubMedGoogle Scholar
  19. Navarro, E., Piccapietra, F., Wagner, B., et al., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol., 2008, vol. 42, no. 23, pp. 8959–8964.CrossRefPubMedGoogle Scholar
  20. Nel, A. and Xia, T., Mädler, L., and Li, N., Toxic potential of materials at the nanolevel, Science, 2006, vol. 311, no. 5761, pp. 622–627.CrossRefPubMedGoogle Scholar
  21. Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 2009, vol. 8, no. 7, pp. 543–557.CrossRefPubMedGoogle Scholar
  22. Pokhrel, L.R. and Dubey, B., Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles, Sci. Tot. Environ., 2013, vols. 452–453, pp. 321–332.CrossRefGoogle Scholar
  23. Pozolotina, V.N., Molchanova, I.V., Karavaeva, L.N., et al., Sovremennoe sostoyanie nazemnykh ekosistem zony Vostochno-Ural’skogo radioaktivnogo sleda (The Current State of Terrestrial Ecosystems in the Eastern Ural Radioactive Trace Zone), Yekaterinburg: Goshchiskii, 2008.Google Scholar
  24. Pozolotina, V.N., Antonova, E.V., Karimullina, E.M., et al., The impacts of permanent irradiation on the flora of the Eastern Ural Radioactive Trace, Radiats. Biol. Radioecol., 2009, vol. 49, no. 1, pp. 97–106.PubMedGoogle Scholar
  25. Pozolotina, V.N., Antonova, E.V., and Karimullina, E.M., Assessment of radiation impact on Stellaria graminea cenopopulations in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2010, vol. 41, no. 6, pp. 459–468.CrossRefGoogle Scholar
  26. Pozolotina, V.N., Molchanova, I.V., Mikhaylovskaya, L.N., et al., The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace, in Radionuclides: Sources, Properties and Hazards, Gerada, J.G., Ed., New York: Nova Science, 2012, pp. 1–22.Google Scholar
  27. Rakhmankulova, Z.F., Fedyaev, V.V., Podashevka, O.A., and Usmanov, I.Y., Alternative respiration pathways and secondary metabolism in plants with different adaptive strategies under mineral deficiency, Russ. J. Plant Physiol., 2003, vol. 50, pp. 206–212.CrossRefGoogle Scholar
  28. Rao, S. and Shekhawat, G.S., Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea, J. Environ. Chem. Eng., 2014, vol. 2, no. 1, pp. 105–114.CrossRefGoogle Scholar
  29. Reardon, S., Fukushima radiation creates unique test of marine life’s hardiness, Science, 2011, vol. 332, no. 6027, p. 292.CrossRefPubMedGoogle Scholar
  30. Riley, P.A., Free radicals in biology: Oxidative stress and the effects of ionizing radiation, Int. J. Rad. Biol., 1994, vol. 65, no. 1, pp. 27–33.CrossRefPubMedGoogle Scholar
  31. Stern, S.T. and McNeil, S.E., Nanotechnology safety concerns revisited, Tox. Sci., 2008, vol. 101, no. 1, pp. 4–21.CrossRefGoogle Scholar
  32. Theng, B.K. and Yuan, G., Nanoparticles in the soil environment, Elements, 2008, vol. 4, no. 6, pp. 395–399.CrossRefGoogle Scholar
  33. Thuesombat, P., Hannongbua, S., Akasit, S., and Chadchawan, S., Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth, Ecotox. Environ. Saf., 2014, vol. 104, pp. 302–309.CrossRefGoogle Scholar
  34. Tsvetaeva, N.E., Filin, V.M., Ivanova, L.A., et al., Use of monoisooctylmethylphosphonic acid and its trivalent iron salt in determining radionuclides in effluents, Sov. Atom. Energy, 1984, vol. 57, no. 2, pp. 548–552.CrossRefGoogle Scholar
  35. Warfield, D.L., Nilan, R.A., and Witters, R.E., The effect of ethylene and ionizing radiation on Saintpaulia peroxidase activity, Radiat. Bot., 1975, vol. 15, no. 4, pp. 423–429.CrossRefGoogle Scholar
  36. Yang, L. and Watts, D.J., Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 2005, vol. 158, no. 2, pp. 122–132.CrossRefPubMedGoogle Scholar
  37. Yang, S., Lin, K., Xu, S., et al., Ecotoxicological effects of multiscale nano-SiO2 and its critical value on rice, J. Agro-Environ. Sci., 2009, vol. 1, pp. 30–34.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. Karimullina
    • 1
  • E. Antonova
    • 1
  • V. Pozolotina
    • 1
  • A. Tokarev
    • 2
  • S. Minko
    • 2
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Nanostructured Materials LaboratoryUniversity of GeorgiaAthensUSA

Personalised recommendations