Russian Journal of Ecology

, Volume 44, Issue 6, pp 515–522 | Cite as

Changes in the assemblage of necrophilous invertebrates under the effect of pollution with emissions from the Middle Ural Copper Smelter

  • A. I. Ermakov


Changes in the abundance and taxonomic and trophic structure of necrophilous invertebrates inhabiting mixed forests have been studied in the area polluted with the emissions from the Middle Ural Copper Smelter. It has been shown that the abundance of most taxa decreases by factors of 2 to 80 along the pollution gradient, but the trophic structure and composition of major groups vary insignificantly. Changes in the necrophilous assemblage can be caused by either direct (toxic) action of industrial pollutants or their indirect effect exerted through modification of habitats.


necrophilous invertebrates population structure industrial pollution heavy metals copper smelter the Middle Urals forest ecosystems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G.S., Factors that influence insect succession on carrion, in Forensic Entomology: The Utility of Arthropods in Legal Investigations, Byrd, J.H. and Castner, J.L., Eds, Boca Raton, Fla: CRC Press, 2010, pp. 201–250.Google Scholar
  2. Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations, and Communities, Oxford: Blackwell, 1986. Translated under the title Ekologiya. Osobi, populyatsii i soobshchestva, Moscow: Mir, 1989, vol. 1.Google Scholar
  3. Bel’skii, E.A. and Lyakhov, A.G., Response of the avifauna to technogenic environmental pollution in the southern taiga zone of the Middle Urals, Russ. J. Ecol., 2003, vol. 34, no. 3, p. 181–187.CrossRefGoogle Scholar
  4. Blackith, R.E. and Blackith, G.R., Insect infestation of small corpses, J. Nat. Hist., 1990, vol. 24, pp. 699–709.CrossRefGoogle Scholar
  5. Braack, L.E.O., Community dynamics of carrion-attendant arthropods in tropical African woodland, Oecologia, 1987, vol. 72, no. 3, pp. 402–429.CrossRefGoogle Scholar
  6. Butovskii, R.O., Motor transport pollution and entomofauna, Agrokhimiya, 1990, no. 4, pp. 139–150.Google Scholar
  7. Current Concepts in Forensic Entomology, Amendt, J., Goff, M.L., Campobasso, C.P., et al., Eds., Dordrecht: Springer, 2010.Google Scholar
  8. Ekologicheskaya toksikologiya: Uchebnoe posobie (Ecological Toxicology: A Manual), Bezel’, V.S., Ed., Yekaterinburg: Ural. Gos. Univ., 2001.Google Scholar
  9. Eremeev, E.A. and Psarev, A.M., The clown beetles (Coleoptera: Histeridae) s a component of necrobiont complex in anthropogenically transformed landscapes, in Entomologicheskie issledovaniya v Severnoi Azii (Entomological Studies in Northern Eurasia), Novosibirsk, 2010, pp. 77–78.Google Scholar
  10. Ermakov, A.I., Structural changes in the carabid fauna of forest ecosystems under a toxic impact, Russ. J. Ecol., 2004, vol. 35, no. 6, p. 403–408.CrossRefGoogle Scholar
  11. Ermakov, A.I., A hanging trap for necrophilous insects, Evraz. Entomol. Zh., 2013, vol. 12, no. 4 (in press).Google Scholar
  12. Freitag, R. and Hastings, L., Kraft mill fallout and ground beetle population, Atmos. Environ., 1973, vol. 7, pp. 587–588.PubMedCrossRefGoogle Scholar
  13. Fuller, M.E., The insect inhabitants of carrion: A study in animal ecology, Aust. Counc. Sci. Ind. Res. Bull., 1934, vol. 82.Google Scholar
  14. Holloway, A.K. and Schnell, G.D., Relationship between numbers of the endangered American burying beetle Nicro-phorus americanus Olivier (Coleoptera: Silphidae) and available food resources, Biol. Conserv., 1997, vol. 81, pp. 145–152.CrossRefGoogle Scholar
  15. Isiche, J., Hillerton, J.E., and Nowell, F., Colonization of the mouse cadaver by flies in southern England, Med. Vet. Entomol., 1992, vol. 6, pp. 168–170.PubMedCrossRefGoogle Scholar
  16. Koárek, P., Decomposition and Coleoptera sucession on exposed carrion of small mammal in Opava, the Czech Republic, Eur. J. Soil Biol., 2003, vol. 39, pp. 31–45.CrossRefGoogle Scholar
  17. Kozlov, M.V., Zvereva, E.L., Gilyazov, A.S., et al., Contaminated zone around a nickel-copper smelter: A death trap c for birds and mammals?, Trends in Biodiversity Research, New York: Nova Science, 2005, pp. 81–101.Google Scholar
  18. Kozminykh, V.O. and Esyunin, S.L., Spectra of ecological groups and the structure of Coleoptera necrobiont communities, Russ. Entomol. J., 1994, vol. 3, pp. 75–80.Google Scholar
  19. Kuusela, S. and Hanski, I., The structure of carrion fly communities: The size and the type of carrion, Holarct. Ecol., 1982, vol. 5, pp. 337–348.Google Scholar
  20. Laskowski, R. and Maryan-ski, M., Heavy metals in epigeic fauna: Trophic-level and physiological hypotheses, Bull. Environ. Contam. Toxicol., 1993, vol. 50, pp. 232–240.PubMedCrossRefGoogle Scholar
  21. Lyabzina, S.N., Necrobiont invertebrates and their involvement in organic matter utilization in terrestrial and aquatic ecosystems of northern Europe, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Petrozavodsk, 2003.Google Scholar
  22. Lyabzina, S.N., Involvement of ants (Formicidae, Hymenoptera) in destruction of animal corpses, in Izv. Petrozavodsk. Gos. Ped. Univ. im. V.G. Belinskogo, Petrozavodsk, 2011, no. 25, pp. 383–385.Google Scholar
  23. Marchenko, M.I., Clssification of corpse entomofauna: The biology of flies and their sigificance for forensic medicine, Sudebno-Med. Ekspert., 1980, no. 2, pp. 17–20.Google Scholar
  24. Marchenko, M.I., Effect of climatic factors on the duration of biological decomposition of corpses by necrobiont insects in northwestern European Russia, Entomol. Obozr., 1992, vol. 71, no. 3, pp. 557–568.Google Scholar
  25. Mégnin, P., La faune de cadavres: application de l’entomologie à la médecine légale, Paris: Gauthier-Villars et fills, 1894.Google Scholar
  26. Mukhacheva, S.V., Ekotoksikologicheskie osobennosti i struktura naseleniya melkikh mlekopitayushchikh v gradiente tekhnogennogo zagryazneniya sredy:, Extended Abstract of Cand. Sci. (Biol) Dissertation, Yekaterinburg, 1996.Google Scholar
  27. Mukhacheva, S.V., The fauna of small insectivores in a gradient of technogenic environmental pollution, in Biologiya nasekomoyadnykh mlekopitayushchikh (The Biology of Insectivores), Novosibirsk, 2007, p. 81–84.Google Scholar
  28. Mukhacheva, S.V. and Kshnyasev, I.A., Population cycle in bank vole under industrial pollution, Rodents et Spatium: 11th Int. Conf. on Rodent Biology, Myshkin, 2008, p. 24.Google Scholar
  29. Nabağlo, L., Participation of invertebrates in decomposition of rodent carcasses in forest ecosystems, Ekol. Polska, 1973, vol. 21, pp. 251–270.Google Scholar
  30. Nesterkov, A.V. and Vorobeichik, E.L., Changes in the structure of chortobiont invertebrate community exposed to emissions from a copper smelter, Russ. J. Ecol., 2009, vol. 40, no. 4, p. 286–296.CrossRefGoogle Scholar
  31. Nuorteva, P. and Nuorteva, S., The fate of mercury in sarcosaprophagous flies and in insects eating them, Ambio, 1982, vol. 11, pp. 34–37.Google Scholar
  32. Pokarzhevskii, A.D., Van Straalen, N.M., Filimonova, Zh.V., Zaitsev, A.S. and Butovskii, R.O., Trophic structure of ecosystems and ecotoxicology of soil organisms, Russ. J. Ecol., 2000, vol. 31, no. 3, pp. 190–197.CrossRefGoogle Scholar
  33. Prisnyi, Yu.A., Occurrence frequencies of morphological anomalies in beetles (Insecta, Coleoptera) and their use in local monitoring, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Belgorod, 2009.Google Scholar
  34. Putman, R.J., The role of carrion-frequenting arthropods in decay process, Ecol. Entomol., 1978, vol. 3, pp. 113–139.CrossRefGoogle Scholar
  35. Sigida, S.I. and Pushkin, S.V., Carrion and skin beetles (Coleoptera: Silphidae, Dermestidae) as bioindicators of changes in the state of the environment, Estestv. Nauki, 2002, no. 5, pp. 20–25.Google Scholar
  36. Smith, R.J. and Merrick, M.J., Resource availability and population dynamics of Nicrophorus investigator, an obligate carrion breeder, Ecol. Entomol., 2001, vol. 26, pp. 173–180.CrossRefGoogle Scholar
  37. Van Straalen, N.M. and Van Wensem, J., Heavy metal content of forest litter arthropods as related to bodysize and trophic level, Environ. Pollut. Ser. A: Ecol. Biol., 1986, vol. 42, no. 3, pp. 209–221.CrossRefGoogle Scholar
  38. Vorobeichik, E.L., Response of soil biota in forest ecosystems of the Middle Urals to emissions from copper-smelting works, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg, 1995.Google Scholar
  39. Vorobeichik, E.L., Sadykov, O.F., and Farafontov, M.G., Ekologicheskoe normirovanie tekhnogennykh zagryaznenii ekosistem (lokal’nyi uroven’) (Ecological Rating of Technogenic Pollutants in Ecosystems (Local Level), Yekaterinburg: Nauka, 1994.Google Scholar
  40. Vorobeichik, E.L., Ermakov, A.I., Zolotarev, M.P., et al., Changes in the diversity of soil macrofauna in a gradient of industrial pollution, Russ. Entomol. J., 2012, vol. 21, no. 2, pp. 203–218.Google Scholar
  41. Wolf, J.M. and Gibbs, J.P., Silphids in urban forests: Diversity and function, Urban Ecosyst., 2004, vol. 7, pp. 371–384.CrossRefGoogle Scholar
  42. Zolotarev, M.P. and Bel’skaya, E.A., Effects of technogenic and natural factors on the abundance of soil herpetobionts, Evraz. Entomol. Zh., 2012, vol. 11, no. 1, pp. 19–28.Google Scholar
  43. Zvereva, E.L., Effects of environmental pollurion with industrial emissions on assemblages of short-lived dipterans (Diptera, Brachycera), Entomol. Obozr., 1993, vol. 72, no. 3, pp. 558–569.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations