Advertisement

Russian Journal of Ecology

, 42:493 | Cite as

Structure of fouling communities formed by Halichondria panicea (Porifera: Demospongiae) in the White Sea

Article

Abstract

The structure of fouling communities formed by the sponge Halichondria panicea in the White Sea is described. On artificial substrates exposed in the sea for a long time, this sponge forms overgrowths on the colonies of long-lived organisms such as the mussel Mytilus edulis or the ascidian Styela rustica. The biomass of algae and sedentary animals (other than H. panicea) on the substrate is markedly smaller in areas colonized by this sponge than in neighboring sponge-free areas. Conversely, the biomass of both sedentary and errant polychaetes is greater in H. panicea colonies than in adjacent fouling communities.

Keywords

Halichondria panicea Mytilus edulis Styela rustica fouling communities structure the White Sea. 

References

  1. Abdo, D.A., Endofauna Differences between Two Temperate Marine Sponges (Demospongiae; Haplosclerida; Chalinidae) from Southwest Australia, Mar. Biol. (Berlin), 2007, vol. 152, pp. 845–854.CrossRefGoogle Scholar
  2. Althoff, K., Schutt, C., Steffen, R., et al. Evidence for a Symbiosis between Bacteria of the Genus Rhodobacter and the Marine Sponge Halichondria Panicea: Harbor also for Putatively Toxic Bacteria?, Mar. Biol. (Berlin), 1998, vol. 130, pp. 529–536.CrossRefGoogle Scholar
  3. Barthel, D., On the Ecophysiology of the Sponge Halichondria panicea in Kel Bight: 1. Substrate Specificity, Growth and Reproduction, Mar. Ecol. Progr. Ser., 1986, vol. 32, pp. 291–298.CrossRefGoogle Scholar
  4. Becerro, M.A., Uriz, M.J., and Turon, X., Chemically-Mediated Interactions in Benthic Organisms: The Chemical Ecology of Crambe crambe (Porifera, Poecilosclerida), Hydrobiologia, 1997, vol. 356, pp. 77–89.CrossRefGoogle Scholar
  5. Braiko, V.D., Some Successional Trends in a Macrofouling Community, Okeanologiya, 1974, vol. 14, no. 2, pp. 345–348.Google Scholar
  6. Buss, L.W., Bryozoan Overgrowth Interactions: The Inter-dependence of Competition for Space and Food, Nature, 1979, vol. 281, pp. 475–477.CrossRefGoogle Scholar
  7. Buss, L.W., Competition and Community Organization on Hard Surfaces in the Sea, in Community Ecology, New York: Harper & Row, 1986, pp. 517–536.Google Scholar
  8. Çinar, M.E., Katagan, T., Ergen, Z., and Sezgin, M., Zoobenthos-Inhabiting Sarcotragus muscarum (Porifera: Demospongiae) from the Aegean Sea, Hydrobiologia, 2002, vol. 482, pp. 107–117.CrossRefGoogle Scholar
  9. Coll, J.C., The Chemistry and Chemical Ecology of Octocorals (Coelenterata, Anthozoa, Octocorallia), Chem. Rev., 1992, vol. 92, pp. 613–631.CrossRefGoogle Scholar
  10. Dobretsov, S., Dahms, H.-U., and Qian, P.-Y., Antibacterial and Anti-Diatom Activity of Hong Kong Sponges, Aquat. Microb. Ecol., 2005, vol. 38, pp. 191–201.CrossRefGoogle Scholar
  11. Engel, S. and Pawlik, J.R., Allelopathic Activities of Sponge Extracts, Mar. Ecol. Progr. Ser., 2000, vol. 207, pp. 273–281.CrossRefGoogle Scholar
  12. Ereskovskii, A.V., Some Trends in the Occurrence and Distribution of Sponges in the East Murman Littoral Zone, Zool. Zh., 1994, vol. 73, no. 4, pp. 5–17.Google Scholar
  13. Fauchald, K. and Jumars, P., The Diet of Worms: A Study of Polychaete Feeding Guilds, Ann Rev., 1979, vol. 17, pp. 193–284.Google Scholar
  14. Greene, C.H., Schoener, A., and Corets, F., Succession on Marine Hard Substrata: The Adaptive Significance of Solitary and Colonial Strategies in Temperate Fouling Communities, Mar. Ecol.: Proc. Ser., 1983, vol. 13, pp. 121–129.CrossRefGoogle Scholar
  15. Hirata, T., Succession of Sessile Organisms on Experimental Plates Immersed in Nabera Bay, Izu Peninsula, Japan: 2. Succession of Invertebrates, Mar. Ecol.: Proc. Ser., 1987, vol. 38, pp. 25–35.CrossRefGoogle Scholar
  16. Ivanova, L.V., The Life Cycle of the Barents Sea Sponge Halichondria panicea (Pallas), in Morfogenezy u gubok (Morphogenesis in Sponges), Leningrad, 1981, pp. 59–73.Google Scholar
  17. Jackson, J.B.C., Competition on Marine Hard Substrata: The Adaptive Significance of Solitary and Colonial Strategies, Am. Nat., 1977, vol. 111, pp. 743–767.CrossRefGoogle Scholar
  18. Khalaman, V.V., Fouling Communities of Mussel Aquaculture Installations in the White Sea, Russ. J. Mar. Biol., 2001a, vol. 27, no. 4, pp. 227–237.CrossRefGoogle Scholar
  19. Khalaman, V.V., Succession of Fouling Communities on an Artificial Substrate of a Mussel Culture in the White Sea, Russ. J. Mar. Biol., 2001b, vol. 27, no. 6, pp. 345–352.CrossRefGoogle Scholar
  20. Khalaman, V.V., Long-Term Changes in Shallow-Water Fouling Communities of the White Sea, Russ. J. Mar. Biol., 2005, vol. 31, no. 6, pp. 344–351.CrossRefGoogle Scholar
  21. Khalaman, V.V., Life Strategies of Fouling Organisms in the White Sea, in Perifiton i obrastanie: teoriya i praktika (Periphyton and Fouling: Theory and Practice), St. Petersburg: Bars, 2008, pp. 44–46.Google Scholar
  22. Khalaman, V.V., Structure and Succession of Fouling Communities, New York: Nova Science, 2010.Google Scholar
  23. Khalaman, V.V. and Lezin, P.A., Mussels against Ascidians, Materialy nauchnoi konferentsii, posvyashchennoi 70-letiyu Belomorskoi biologicheskoi stantsii MGU: Sb. st. (Proc. Sci. Conf. Dedicated to the 70th Anniversary of the White Sea Biological Station, Moscow State University), Moscow: Grif i Ko, 2008, pp. 130–134.Google Scholar
  24. Khalaman, V.V., Belyaeva, D.V., and Flyachinskaya, L.P., Effect of Excretory-Secretory Products of Some Fouling Organisms on Settling and Metamorphosis of the Larvae of Styela rustica (Ascidiae), Russ. J. Mar. Biol., 2008, vol. 34, no. 3, pp. 170–173.CrossRefGoogle Scholar
  25. Khalaman, V.V., Flyachinskaya, L.P., and Lezin, P.A., Effects of the Excretions and Secretions of Some Fouling Animals on the Settling of Mytilus edulis L. Larvae (Bivalvia: Mollusca), Zool. Bespozv., 2009, vol. 6, no. 1, pp. 65–72.Google Scholar
  26. Kobayashi, M. and Kitagawa, I., Likely Microbial Participation in the Production of Bioactive Marine Sponge Chemical Constituents, in Sponge Sciences: Multidisciplinary Perspectives, Watanabe, Y. and Fusetani, N., Eds., Tokyo: Springer Verlag, 1998, pp. 379–389.Google Scholar
  27. Lauer, T.E. and Spacie, A., Space As a Limiting Resource in Freshwater Systems: Competition between Zebra Mussels (Dreissena polymorpha) and Freshwater Sponges (Porifera), Hydrobiologia, 2004, vol. 517, pp. 137–145.CrossRefGoogle Scholar
  28. Maksimovich, N.V. and Morozova, M.V., Structural Features of Fouling Communities on Substrates Used for Industrial Mussel Culture in the White Sea, in Izuchenie opyta promyshlennogo vyrashchivaniya midii v Belom more (Analysis of Experience in Industrial Mussel Culture in the White Sea), Tr. Biol. Nauchno-Issled. Inst. S.-Peterb. Gos. Univ., St. Petersburg, 2000, issue 46, pp. 124–143.Google Scholar
  29. Maughan, B.C. and Barnes, D.K., Seasonality of Competition in Early Development of Subtidal Encrusting Communities, Mar. Ecol., 2000, vol. 21, pp. 205–220.CrossRefGoogle Scholar
  30. Nandakumar, K., Tanaka, M., Effects of neighboring organisms on the growth of three intertidal encrusting chelestome bryozoans. Mar. Ecol. Prog. Ser., 1994, V. 114, pp. 157–163.CrossRefGoogle Scholar
  31. Nandakumar, K. and Tanaka, M., Interspecific Competition among Fouling Organisms: A Review, Publ. Amakusa Mar. Biol. Lab., 1993, vol. 12, pp. 13–35.Google Scholar
  32. Nandakumar, K., Tanaka, M., and Kikuchi, T., Interspecific Competition among Fouling Organisms in Tomioka Bay, Japan, Mar. Ecol.: Proc. Ser., 1993, vol. 94, pp. 43–50.CrossRefGoogle Scholar
  33. Neves, G. and Omena, E., Influence of Sponge Morphology on the Composition of the Polychaete Associated Fauna from Rocas Atoll, Northeast Brazil, Coral Reefs, 2003, vol. 22, pp. 123–129.CrossRefGoogle Scholar
  34. Oshurkov, V.V., Suktsessii i dinamika epibentosnykh soobshchestv verkhnei sublitorali boreal’nykh vod (Succession and Dynamics of Epibenthic Communities in the Upper Sublittoral Zone of Boreal Water Bodies), Vladivostok: Dal’nauka, 2000.Google Scholar
  35. Porter, J.M. and Targett, N.M., Allelochemical Interactions between Sponges and Corals, Biol. Bull., 1988, vol. 175, pp. 230–239.CrossRefGoogle Scholar
  36. Sammarco, P.W., Coll, J.C., La Barre, S., and Willis, B., Competitive Strategies of Soft Corals (Coelenterata: Octocorallia): Allelopathic Effects on Selected Scleractinian Corals, Coral Reefs, 1983, vol. 1, pp. 173–178.CrossRefGoogle Scholar
  37. Serejo, C.S., Gammaridean and Caprellidean Fauna (Crustacea) Associated with the Sponge Dysidea fragilis Johnston at Arraial Do Cabo, Rio De Janeiro, Brazil, Bull. Mar. Sci., 1998, vol. 63, pp. 363–385.Google Scholar
  38. Strel’tsov, V.E., Feeding Biology of the Predatory Polychaete Harmothoe imbricata (L.) in Dalnie Zelentsy Bay, the Barents Sea, Tr. Murmansk. Morsk. Biol. Inst., Murmansk, 1966, vol. 11(15), pp. 115–121.Google Scholar
  39. Sutherland, J.P., Functional Role of Schizoporella and Styela in the Fouling Community at Beaufort, North Carolina, Ecology, 1978, vol. 59, pp. 257–264.CrossRefGoogle Scholar
  40. Thaker, R.W., Becerro, M.A., Lumbang, W.A., and Paul, V.J., Allelopathic Interactions between Sponges on a Tropical Reef, Ecology, 1998, vol. 79, pp. 1740–1750.CrossRefGoogle Scholar
  41. Thomassen, S. and Riisgård, H.U., Growth and Energetics of the Sponge Halichondria panicea, J. Mar. Ecol. Progr. Ser., 1995, vol. 128, pp. 239–246.CrossRefGoogle Scholar
  42. Zhivotovsky, L.A., Populyatsionnaya biometriya (Population Biometry), Moscow: Nauka, 1991.Google Scholar
  43. Zvyagintsev, A.Yu., Morskoe obrastanie v severo-zapadnoi chasti Tikhogo okeana (Marine Fouling in the Northwest Pacific), Vladivostok: Dal’nauka, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.White Sea Biological Station, Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations