Russian Journal of Ecology

, Volume 42, Issue 4, pp 270–276 | Cite as

Genetic differentiation of Pinus mugo Turra and P. sylvestris L. populations in the Ukrainian Carpathians and the Swiss Alps

  • S. N. Sannikov
  • I. V. Petrova
  • F. Schweingruber
  • E. V. Egorov
  • T. V. Parpan


The allozyme analysis of six local populations of Pinus mugo Turra and six populations of P. sylvestris L. in the Ukrainian Carpathians, Swiss Alps, and Schwarzwald has shown a higher polymorphism and greater interpopulation differentiation of the Carpathian group of P. mugo populations compared to the Alpine group (Nei’s genetic distance DN 78 at the level of geographic population group is −0.023). A genetic differentiation of DN 78 = 0.049 between these populations, which are isolated by a distance of more than 1000 km, has been found. This confirms the existence of the subspecies P. mugo ssp. mugo and P. mugo ssp. uncinata in the Carpathians and Alps, respectively. The hypothesis is put forward that the former subspecies has been formed in the Balkans and the latter, in the Pyreneans. It has been demonstrated that regional populations and geographic groups of P. sylvestris are less differentiated than those of P. mugo.


Pinus sylvestris Pinus mugo Ukrainian Carpathians Swiss Alps population subspecies allozyme analysis polymorphism genetic differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boratyńska, K., Marcysiak, K., and Boratynński, A., Pinus mugo (Pinaceae) in the Abruzzi Mountains: High Morphological Variation in Isolated Populations, Bot. J. Linn. Soc., 2005, vol. 147, pp. 309–316.CrossRefGoogle Scholar
  2. Christensen, K.I., Taxonomic Revision of the Pinus mugo Complex and P. × rhaetica (P. mugo × sylvestris) (Pinaceae), Nordic J. Bot., 1987, vol. 7, pp. 383–408.CrossRefGoogle Scholar
  3. Dzialuk, A., Mushewicz, E., Boratynński, A., et. al., Genetic Variation of Pinus uncinata (Pinaceae) in the Pyrenees Determined with cpSSR Markers, Plant Syst. Evol., 2009, vol. 277, pp. 197–205.CrossRefGoogle Scholar
  4. Filippova, T.V., Sannikov, S.N., Petrova, I.V., and Sannikova, N.S., Fenogenogeografiya populyatsii sosny obyknovennoi na Urale (Phenogenogeography of Scots Pine Populations in the Urals), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.Google Scholar
  5. Gömory, D., Longauer, R., Liepelt, S., et. al., Variation Patterns of Mitochondrial DNA of Abies alba Mill. in Suture Zones of Post-Glacial Migration in Europe, Acta Soc. Bot. Poloniae, 2004, vol. 73, no. 2, pp. 203–206.Google Scholar
  6. Huertz, M., Teufel, J., Gonzalez-Martinez, S.C., et. al., Geography Determines Genetic Relationships between Species of Mountain Pine (Pinus mugo Complex) in Western Europe, J. Biogeogr. 2010, vol. 37, pp. 541–556.CrossRefGoogle Scholar
  7. Jalas, J. and Suominen, J. Eds., Atlas Florae Europaeae, vol. 2: Gymnospermae, Helsinki, 1973.Google Scholar
  8. Korochkin, L.I., Serov, O.L., and Pudovkin, A.I., Genetika izofermentov (Genetics of Isozymes), Moscow: Nauka, 1977.Google Scholar
  9. Korshikov, I.I., Privalikhin, S.N., Gorlova, E.M, and Pirko, Ya.V., Altitudinal Differentiation of Mountain populations of Pinaceae Species in the Ukrainian Carpathians and Crimea, Bot. Zh., 2005, vol. 90, no. 9, pp. 1412–1420.Google Scholar
  10. Lang, G., Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse, Jena: Gustav Fiçher, 1994.Google Scholar
  11. Lewandowski, A., Boratynski, A., and Mejnartowicz, L., Allozyme Investigations on the Genetic Differentiation between Closely Related Pines: Pinus sylvestris, P. mugo, P. uncinata, and P. uliginosa (Pinaceae), Plant Syst. Evol., 2000, vol. 221, pp. 15–24.CrossRefGoogle Scholar
  12. Mirov, N.T., The Genus Pinus, New York: Ronald Press, 1967.Google Scholar
  13. Neet-Sarqueda, C., Genetic Differentiation of Pinus sylvestris L. and Pinus mugo aggr. Populations in Switzerland, Silvae Genet., 1994, vol. 43, pp. 207–215.Google Scholar
  14. Nei, M., Genetic Distance between Populations, Am. Nat., 1972, vol. 106, pp. 283–292.CrossRefGoogle Scholar
  15. Nei, M., Estimation of Average Heterosygosity ahd Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol. 89, pp. 583–590.PubMedGoogle Scholar
  16. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.Google Scholar
  17. Oline, D.K., Mitton, J.B., and Grant, M.C., Population and Subspecific Genetic Differentiation in the Foxtail Pine (Pinus balfouriana), Evolution, 2000, vol. 54, pp. 1813–1819.PubMedGoogle Scholar
  18. Parpan, T.V., Bioecological Features of the White Spruce (Abies alba Mill.) in Forest Biogeocenoses of Ciscarpathia: Genesis, Renewal, and Prognosis, Extended Absract of Cand. Sci. (Biol.) Dissertation, Dnepropetrovsk, 2004.Google Scholar
  19. Podogas, A.V., Shurkhal, A.V., Semerikov, V.L., and Rakitskaya, T.A., Genetic Variation of Enzymes in Needles of Siberian Stone Pine, Genetika (Moscow), 1991, vol. 27, no. 4, pp. 695–703.Google Scholar
  20. Robledo-Arnuncio, J.J., Collada, C., Alia, R., and Gil, L., Genetic Structure of Montane Isolates of Pinus sylvestris L. in a Mediterranean Refugial Area, J. Biogeogr., 2005, vol. 32, pp. 595–605.CrossRefGoogle Scholar
  21. Rohlf, E.J.. Numerical Taxonomy and Multivariate Analysis System, New York: Exter Publishing Ltd., 1988.Google Scholar
  22. Sannikov, S.N., Isolation of Populations and Types of Borders between Them in Scotch Pine, Ekologiya, 1993, no. 1, pp. 4–11.Google Scholar
  23. Sannikov, S.N. and Petrova, I.V., Differentsiatsiya populyatsii sosny obyknovennoi (Differentiation of Scots Pine Populations), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2003.Google Scholar
  24. Sannikov, S.N. and Sannikova, N.S., The Hypothesis of Hydrochorous Dissemination of Populations of Conifers, Ekologiya, 2007, no. 2, pp. 83–87.Google Scholar
  25. Sannikov, S.N., Shlapakov, P.I., Petrova, I.V., Egorov, E.V., and Konstantinovich, Yu.M., Genetic Divergence and Phylogenetic Relationships of Pinus Species in the Crimea and Bordering Regions, Krymskii prirodnyi zapovednik: Matly nauchn.-praktich. konf., posvyashch. 80-letiyu Krymskogo prirodn. zapovednika (Proc. Sci.-Pract. Conf. Dedicated to the 80th Anniversary of the Crimean Nature Reserve), Alushta, 2003, pp. 112–115.Google Scholar
  26. Sneath, P.H. and Sokal, R.R., Numerical Taxonomy, San Francisco: Freeman, 1973.Google Scholar
  27. Soto, A., Robledo-Arnuncio, J.J., Gonzalez-Martinez, S.C., and Smouses, P.E., Climatic Niche and Neutral Genetic Diversity of the Six Iberian Pine Species: A Retrospective and Prospective View, Mol. Ecol., 2010, vol. 19, pp. 1396–1409.PubMedCrossRefGoogle Scholar
  28. Swofford, D.L. and Selander, R.B., BIOSYS-1: A FOR-TRAN Program for the Comprehensive Analysis of Electrophoretic Data in Population Genetics and Systematics, Heredity, 1981, vol. 72, pp. 281–283.Google Scholar
  29. Tarasov, P.E., Volkova, V.S., Webb, T. et. al., Last Glacial Maximum Biomes Recostructed from Pollen and Macrofossil Data from Northern Eurasia, J. Biogeogr., 2000, vol. 27, pp. 609–620.CrossRefGoogle Scholar
  30. Wachowiak, W. and Prus-Glowacki, W., Different Patterns of Genetic Structure of Relict and Isolated Populations of Endandered Pear-Bog Pine (Pinus uliginosa Neumann), J. Appl. Genet. 2009, vol. 50, no. 4, pp. 329–339.PubMedCrossRefGoogle Scholar
  31. Wohlfarth, B., Hannon, G., Feudean, A., et al., Reconstruction of Climatic and Environmental Changes in NW Romania during the Early Part of the Last Deglaciation (−15000–13000 cal yr BP), Quatern. Sci. Rev., 2001, vol. 20, pp. 1897–1914.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. N. Sannikov
    • 1
  • I. V. Petrova
    • 1
  • F. Schweingruber
    • 2
  • E. V. Egorov
    • 1
  • T. V. Parpan
    • 3
  1. 1.Botanical Garden, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Swiss Federal Institute for ForestSnow and Landscape ResearchBirmensdorfSwitzerland
  3. 3.Ukrainian Research Institute of Alpine ForestryIvano-FrankovskUkraine

Personalised recommendations