Advertisement

Radiochemistry

, Volume 61, Issue 1, pp 81–85 | Cite as

Cyclotron 99mTc Production and Quality Control for Medical Applications

  • A. H. Al RayyesEmail author
  • T. Assaad
  • Y. Ailouti
Article
  • 2 Downloads

Abstract

A new production method of 99mTc using a high-current solid target was tested. The separation and purification setup was developed to produce high quantity and high specific activity of 99mTcO 4 suitable for labeling various ligands for nuclear medicine imaging. A semiautomated target dissolution and separation system has been developed for 99mTcO 4 production. The separation is based on a chromatographic column system. The chemical and radiochemical purity was found to be in accordance with the US and European Pharmacopoeia specifications. 99% of activity in the final product belonged to 99mTc. Less than 1% of the 99mTc activity was not incorporated in the target product with MDP kits. Biodistribution data for the labeled MDP kits show that the quality of the produced 99mTc-pertechnetate is identical to that of the pertechnetate from 99Mo/99mTc generators. The application of 99mTc-ethylenedicysteine in human proves the good quality of the produced Na99mTcO4.

Keywords

technetium-99m cyclotron radioisotope production ion-exchange chromatography solid targets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arano, Y., Ann. Nucl. Med., 2002, vol. 16, no. 2, pp. 79–93. DOI:  https://doi.org/10.1007/BF02993710.CrossRefGoogle Scholar
  2. 2.
    Bandoli, G., Tisato, F., Dolmella, A., and Agostini, S., Coord. Chem. Rev., 2006, vol. 250, nos. 3–4, pp. 561–573. DOI:  https://doi.org/10.1016/j.ccr.2005.09.012.CrossRefGoogle Scholar
  3. 3.
    Liu, S., Adv. Drug Deliv. Rev., 2008, vol. 60, no. 12, pp. 1347–1370. DOI:  https://doi.org/10.1016/j.addr.2008.04.006.CrossRefGoogle Scholar
  4. 4.
    Pillai, M.R., Dash, A., and Knapp, F.F., Jr., J. Nucl. Med., 2013, vol. 54, no. 2, pp. 313–323. DOI:  https://doi.org/10.2967/j.numed.112.110338.CrossRefGoogle Scholar
  5. 5.
    Ballinger, J.R., J. Label. Compd. Radiopharm., 2010, vol. 53, no. 4, pp. 167–168. DOI:  https://doi.org/10.1002/jlcr.1743.Google Scholar
  6. 6.
    Von Hippel, F.N. and Kahn, L.H., Sci. Global Secur., 2006, vol. 14, nos. 2–3, pp. 151–162. DOI:  https://doi.org/10.1080/08929880600993071.CrossRefGoogle Scholar
  7. 7.
    Scholten, B., Lambrecht, R.M., Cogneau, M., et al., Appl. Radiat. Isot., 1999, vol. 51, no. 1, pp. 69–80. DOI:  https://doi.org/10.1016/S0969-8043(98)00153-5.CrossRefGoogle Scholar
  8. 8.
    Takács, S., Szűcs, Z., Tárkányi, F., et al., J. Radioanal. Nucl. Chem., 2003, vol. 257, no. 1, pp. 195–201. DOI:  https://doi.org/10.1023/A:1024790520036.CrossRefGoogle Scholar
  9. 9.
    Lebeda, O. and Pruszynski, M., Appl. Radiat. Isot., 2010, vol. 68, no. 12, pp. 2355–2365. DOI:  https://doi.org/10.1016/j.apradiso.2010.05.011.CrossRefGoogle Scholar
  10. 10.
    Qaim, S.M., Sudára, S., Scholten, B., et al., Appl. Radiat. Isot., 2014, vol. 85, pp. 101–113. DOI:  https://doi.org/10.1016/j.apradiso.2013.10.004.CrossRefGoogle Scholar
  11. 11.
    Gagnon, K., Bénard, F., Kovacs, M., et al., Nucl. Med. Biol., 2011, vol. 38, no. 6, pp. 907–916. doi:  https://doi.org/10.1016/j.nucmedbio.2011.02.010.CrossRefGoogle Scholar
  12. 12.
    Al Rayyes, A.H. and Ailouti, Y., World J. Nucl. Sci. Technol., 2013, vol. 3, pp. 72–77. DOI:  https://doi.org/10.4236/wjnst.2013.32012.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Cyclotron Division, Radioisotopes DepartmentAtomic Energy Commission of SyriaDamascusSyria

Personalised recommendations