Advertisement

Radiochemistry

, Volume 60, Issue 6, pp 657–663 | Cite as

Radionuclides in Irradiated Graphite of Uranium–Graphite Reactors: Decontamination by Thermochemical Methods

  • A. G. Volkova
  • E. V. Zakharova
  • N. I. Rodygina
  • A. O. Pavlyuk
  • A. A. ShiryaevEmail author
Article

Abstract

Graphite samples from blocks and sleeves are characterized by extremely heterogeneous spatial distribution of radionuclides on the scale of tens and hundreds of micrometers. The graphite decontamination occurs in three steps: Up to 25% of 14C is removed in the course of low-temperature annealing or treatment of graphite with liquid reagents (total weight loss of graphite ≤10%); up to 70–80% of 14C is removed in the course of 20-h heat treatment under oxidizing conditions; and in the final step the degree of removal of 14C exceeds 90%, with a proportional decrease in the graphite weight. Oxidation of graphite in the first steps of thermochemical treatment mainly occurs along (micro)cracks and other defects, which favors the removal of relatively weakly bound 14C, e.g., from the pore space. The removal of 14C from the crystal lattice of graphite requires its breakdown, e.g., by high-temperature heat treatment.

Keywords

uranium–graphite reactors irradiated graphite thermochemical treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov, V.V., Burdakov, N.S., Virgil’ev, Yu.S., et al., Deistvie oblucheniya na grafit yadernykh reaktorov (Action of Irradiation on Nuclear Reactor Graphite), Atomizdat, 1978.Google Scholar
  2. 2.
    Bushuev, A.V., Verzilov, Yu.M., Zubarev, V.N., et al., At. Energy, 2000, vol. 89, no. 2, pp. 650–657.CrossRefGoogle Scholar
  3. 3.
    Bushuev, A.V., Kozhin, A.F., Zubarev, V.N., et al., At. Energy, 2015, vol. 117, no. 3, pp. 196–200.CrossRefGoogle Scholar
  4. 4.
    Pavlyuk, A.O., Kotlyarevskii, S.G., Bespala, E.V., et al., Izv. Tomsk. Politekh. Univ. Inzh. Georesursov, 2017, vol. 328, no. 8, pp. 24–32.Google Scholar
  5. 5.
    McDermott, L., Characterization and chemical treatment of irradiated UK graphite waste, PhD Thesis, Univ. of Manchester, 2011.Google Scholar
  6. 6.
    Fachinger, J., von Lensa, W., and Podruhzina, T., Nucl. Eng. Des., 2008, vol. 238, pp. 3086–3091.CrossRefGoogle Scholar
  7. 7.
    Zelenskiy, V.F., Odeychuk, N.P., Petelguzov, I.A., et al., Probl. At. Sci. Eng., 2011, no. 2 (72), pp. 116–122.Google Scholar
  8. 8.
    Zelenskiy, V.F., Odeychuk, N.P., Rizhov, V.P., et al., Probl. At. Sci. Eng., 2013, no. 5 (87), pp. 125–130.Google Scholar
  9. 9.
    Kim, E.-S., Song, J.-S., and Hong, S.-D., in Annual World Conf. on Carbon (Carbon 2012), 2012, vol. 1, p. 7.Google Scholar
  10. 10.
    Karlina, O.A., Yurchenko, A.Yu., Tuktarov, M.A., and Romenkov, A.A., Patent RU 2 546 981, 2015.Google Scholar
  11. 11.
    Tryba, B., Morawski, A.W., and Inagaki, M., Carbon, 2005, vol. 43, pp. 2397–2429.CrossRefGoogle Scholar
  12. 12.
    Laurent, G., Patent US 2014 0 350 320 A1.Google Scholar
  13. 13.
    Volkova, A.G., Zakharova, E.V., Pavlyuk, A.O., and Shiryaev, A.A., Radiochemistry, 2018, vol. 60, no. 5, pp. 558–562.CrossRefGoogle Scholar
  14. 14.
    Shiryaev, A.A., Volkova, A.G., Zakharova, E.V., et al., Radiochemistry, 2018, vol. 60, no. 6, pp. 664–671.Google Scholar
  15. 15.
    Kolotov, V.P., Grozdov, D.S., Dogadkin, N.N., et al., J. Anal. Chem., 2015, vol. 70, no. 3, pp. 287–291.CrossRefGoogle Scholar
  16. 16.
    Vulpius, D., Baginski, K., Fischer, C., and Thomauske, B., J. Nucl. Mater., 2013, vol. 438, nos. 1–3, pp. 163–177.CrossRefGoogle Scholar
  17. 17.
    Novak, Yu.V., Perkova, G.A., and Kuteinikov, A.F., in Konstruktsionnye materialy na osnove ugleroda: Sbornik trudov (Carbon-Based Structural Materials: Coll. of Works), Moscow: Metallurgiya, 1979, issue 14, pp. 36–40.Google Scholar
  18. 18.
    Novak, Yu.V., Perkova, G.A., and Kuteinikov, A.F., in Konstruktsionnye materialy na osnove ugleroda: Sbornik trudov (Carbon-Based Structural Materials: Coll. of Works), Moscow: Metallurgiya, 1979, issue 14, pp. 40–45.Google Scholar
  19. 19.
    Ziegler, J.F., Biersack, J., and Littmark, U., The Stopping and Range of Ions in Matter, Pergamon, 1985.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. G. Volkova
    • 1
  • E. V. Zakharova
    • 1
  • N. I. Rodygina
    • 1
  • A. O. Pavlyuk
    • 2
  • A. A. Shiryaev
    • 1
    Email author
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Experimental and Demonstration Center for Decommissioning of Uranium–Graphite ReactorsSeverskRussia

Personalised recommendations