, Volume 60, Issue 6, pp 648–656 | Cite as

Leaching of Radioactive Waste Surrogates from a Glassy Matrix and Migration of the Leaching Products in Gneisses

  • V. I. MalkovskyEmail author
  • S. V. Yudintsev
  • E. V. Aleksandrova


Changes in the glassy matrix containing high-level waste surrogates after 24-h heating in an autoclave at 300°С with steam at 66% relative humidity were studied. Experiments were performed with an Na–Al–P glass sample containing Cs, Sr, Ce, Nd, and U. The effect of crystallization on the leaching of the elements from the glassy matrix and the form in which the waste surrogates are released into water were determined. The transport of the leaching products in a gneiss sample taken from the core of a borehole of the Yeniseiskii site of the Nizhnekansky massif was studied. REE and U occur in the solution after leaching mainly in the colloidal form. Colloidal particles of elements exhibit high mobility in migration in the rock.


vitrified high-level waste steam treatment devitrification leaching radionuclides mobility colloidal form gneiss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laverov, N.P., Velichkin, V.I., Omel’yanenko, B.I., et al., Izolyatsiya otrabotavshikh yadernykh materialov: geologo-geokhimicheskie osnovy (Isolation of Spent Nuclear Materials: Geological and Geochemical Principles), Moscow: Inst. Fiziki Zemli Ross. Akad. Nauk, 2008.Google Scholar
  2. 2.
    Kopyrin, A.A., Karelin, A.I., and Karelin, V.A., Tekhnologiya proizvodstva i radiokhimicheskoi pererabotki yadernogo topliva (Technology for Production and Radiochemical Reprocessing of Nuclear Fuel), Moscow: Atomenergoizdat, 2006.Google Scholar
  3. 3.
    Kochkin, B.T., Malkovsky, V.I., and Yudintsev, S.V., Nauchnye osnovy otsenki bezopasnosti geologicheskoi izolyatsii dolgozhivushchikh radioaktivnyikh otkhodov (Eniseiiskii proekt) (Scientific Principles of Evaluating the Safety of Geological Isolation of Long-Lived Radioactive Waste (Yenisei Project)), Moscow: Inst. Geologii Rudnykh Mestorozhdenii, Petrografii, Mineralogii i Geokhimii Ross. Akad. Nauk, 2017.Google Scholar
  4. 4.
    Rybal’chenko, A.I., Pimenov, M.K., Kostin, P.P., et al., Glubinnoe zakhoronenie zhidkikh radioaktivnykh otkhodov (Deep Disposal of Liquid Radioactive Waste), Moscow: IzdAT, 1994.Google Scholar
  5. 5.
    Krauskopf, K.B., Annu. Rev. Earth Planet. Sci., 1988, vol. 16, pp. 173–200.CrossRefGoogle Scholar
  6. 6.
    End points for spent nuclear fuel and high-level radioactive waste in Russia and the United States, Committee on End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States, Washington: National Acad., 2003.Google Scholar
  7. 7.
    Tsebakovskaya, N.S., Utkin, S.S., Linge, I.I., and Pron’, I.A., Foreign projects for spent nuclear fuel and radioactive waste disposal. Part I, Preprint of the Nuclear Safety Institute, Russian Acad. Sci., 2017, no. IBRAE-2017-03.Google Scholar
  8. 8.
    Lifanov, F.A. and Karlina, O.K., Bezopasn. Yadern. Tekhnol. Okruzh. Sredy, 2012, no. 2, pp. 122–132.Google Scholar
  9. 9.
    Ershov, B.G., Minaev, A.A., Popov, I.B., et al., Vopr. Radiats. Bezopasn., 2005, no. 1, pp. 13–22.Google Scholar
  10. 10.
    Remizov, M.B., Kozlov, P.V., Logunov, M.V., et al., Vopr. Radiats. Bezopasn., 2014, no. 3, pp. 17–25.Google Scholar
  11. 11.
    Hench, L.L., Clark, D.E., and Harker, A.B., J. Mater. Sci., 1986, vol. 21, no. 5, pp. 1457–1478.CrossRefGoogle Scholar
  12. 12.
    Nuclear Waste Conditioning: A Nuclear Energy Division Monograph, Parisot, J.-F., Ed., Gif-sur-Yvette: Commissariat à l’Energie Atomique, 2009.Google Scholar
  13. 13.
    Carter, J.T., Luptak, A.J., Gastelum, J., et al., Fuel Cycle Potential Waste Inventory for Disposition, Washington: US Department of Energy, 2012.Google Scholar
  14. 14.
    Tait, J.C., Hayward, P.J., and Devgun, J.C., Can. J. Civil Eng., 1989, vol. 16, no. 4, pp. 444–458.CrossRefGoogle Scholar
  15. 15.
    Schneider, M. and Marignac, Y., Spent Nuclear Fuel Reprocessing in France, Research Report no. 4 of Int. Panel on Fissile Materials, Princeton (USA): Princeton Univ., 2008.Google Scholar
  16. 16.
    Choi, J.-H., Eun, H.-Ch, Lee, T.-K., et al., J. Nucl. Mater., 2017, vol. 483, pp. 82–89.CrossRefGoogle Scholar
  17. 17.
    Krylova, N.V., Kulichenko, V.V., and Salamatina, R.N., At. Energ., 1990, vol. 69, no. 4, pp. 865–868.CrossRefGoogle Scholar
  18. 18.
    Bates, J.K., Jardine, L.J., and Steindler, M.J., Science, 1982, vol. 218, pp. 51–54.CrossRefGoogle Scholar
  19. 19.
    Abrajano, T.A., Bates, J.K., and Mazer, J.J., J. Non-Cryst. Solids, 1989, vol. 108, pp. 269–288.CrossRefGoogle Scholar
  20. 20.
    Bartholomew, R.F., Tick, P.A., and Stooky, S.D., J. Non-Cryst. Solids, 1980, vols. 38/39, pp. 637–642.Google Scholar
  21. 21.
    Burns, P.C., Olson, R.A., Finch, R.J., et al., J. Nucl. Mater., 2000, vol. 278, pp. 290–300.CrossRefGoogle Scholar
  22. 22.
    Neeway, J., Abdelouas, A., Grambow, B., et al., J. Non-Cryst. Solids, 2012, vol. 358, pp. 2894–2905.CrossRefGoogle Scholar
  23. 23.
    Cassingham, N.J., Corkhill, C.L., Stennett, M.C., et al., J. Nucl. Mater., 2016, vol. 479, pp. 639–646.CrossRefGoogle Scholar
  24. 24.
    Yudintsev, S.V., Mal’kovskii, V.I., and Mokhov, A.V., Dokl. Earth Sci., 2016, vol. 468, no. 2, pp. 196–200.Google Scholar
  25. 25.
    Mal’kovsky, V.I., Yudintsev, S.V., Mokhov, A.V., and Pervukhina, A.M., At. Energy, 2018, vol. 123, no. 3, pp. 177–182.CrossRefGoogle Scholar
  26. 26.
    Buck, E.C. and Bates, J.K., Appl. Geochem., 1999, vol. 14, no. 5, pp. 635–653.CrossRefGoogle Scholar
  27. 27.
    Honeyman, B.D., Nature, 1999, vol. 397, pp. 23–24.CrossRefGoogle Scholar
  28. 28.
    Malkovsky, V.I. and Pek, A.A., Geol. Ore Depos., 2009, vol. 51, no. 2, pp. 79–92.CrossRefGoogle Scholar
  29. 29.
    Malkovsky, V., Actinide Nanoparticle Research, Kalmykov, S.N. and Denecke, M.A., Eds., Berlin: Springer, 2011, pp. 195–243.Google Scholar
  30. 30.
    Rivkin, S.L. and Aleksandrov, A.A., Termodinamicheskie svoistva vody i vodyanogo para (Thermodynamic Properties of Water and Water Vapor), Moscow: Energiya, 1975.Google Scholar
  31. 31.
    DeMarsily, G., Quantitative Hydrogeology, Orlando: Academic, 1986.Google Scholar
  32. 32.
    Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Oxford Science, 1959.Google Scholar
  33. 33.
    Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic, 1981.Google Scholar
  34. 34.
    Hölttä, P., Siitari-Kauppi, M., Hakanen, M., et al., J. Contam. Hydrol., 1997, vol. 26, pp. 135–145.CrossRefGoogle Scholar
  35. 35.
    Gardiner, C.W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Berlin: Springer, 1983.CrossRefGoogle Scholar
  36. 36.
    Bowen, B.D. and Epstein, N., J. Colloid Interface Sci., 1979, vol. 72, no. 1, pp. 81–97.CrossRefGoogle Scholar
  37. 37.
    Bowen, B.D., Levine, S., and Epstein, N., J. Colloid Interface Sci., 1976, vol. 54, no. 3, pp. 375–390.CrossRefGoogle Scholar
  38. 38.
    Byegård, J., Skarnemark, G., and Skålberg, M., Mater. Res. Soc. Symp. Proc., 1994, vol. 353, part 2, pp. 1077–1088.Google Scholar
  39. 39.
    Malkovsky, V.I. and Pek, A.A., Petrologiya, 1994, vol. 2, no. 6, pp. 646–652.Google Scholar
  40. 40.
    Laverov, N.P., Omel’yanenko, B.I., and Yudintsev, S.V., Geol. Ore Depos., 2004, vol. 46, no. 1, pp. 22–35.Google Scholar
  41. 41.
    Laverov, N.P., Omel’yanenko, B.I., and Yudintsev, S.V., Ross. Khim. Zh., 2010, vol. LIV, no. 3, pp. 69–80.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. I. Malkovsky
    • 1
    • 2
  • S. V. Yudintsev
    • 1
    • 3
  • E. V. Aleksandrova
    • 1
    • 2
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia

Personalised recommendations