, Volume 60, Issue 6, pp 573–580 | Cite as

New Compounds of Some Trivalent Lanthanides and Actinides with Furancarboxylic Acid. Synthesis, Structure, and Absorption Spectra of the Complexes [(NH2)3C]2[M(OOCC4H3O)5] (M = La, Ce, Pr, Nd, Tb, Np, Pu, Am)

  • A. M. Fedoseev
  • M. N. Sokolova
  • M. S. Grigor’ev
  • N. A. Budantseva


Eight new compounds of some lanthanides and actinides with furancarboxylate anion were synthesized and studied. Their structure was determined by single crystal X-ray diffraction. All the compounds contain complex anions [M(OOCC4H3O)5]2– in which four of five furancarboxylate anions coordinate the central metal atom in the bidentate fashion via carboxy groups, whereas the fifth anion is bonded to the metal atom only via one O atom of the carboxy group. In all the complexes except the Tb compound the ether oxygen atom of the fifth furancarboxylate anion is also bonded to the metal atom; i.e., a five-membered chelate ring (МОССО) is formed. Such bond is not formed in the Tb compound. Thus, the coordination number of the central atom is 9 in the Tb compound and 10 in the other complexes.


lanthanides actinides complexes with furancarboxylate anions IR spectra crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skanthakumar, S., Antonio, M.R., Wilson, R.E., and Soderholm, L., Inorg. Chem., 2007, vol. 46, pp. 3485–3491.CrossRefGoogle Scholar
  2. 2.
    Gogolev, A.V., Grigoriev, M.S., Budantseva, N.A., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 3, pp. 271–277.CrossRefGoogle Scholar
  3. 3.
    Polinski, M.J., Grant, D.J., Wang, Sh., et al., J. Am. Chem. Soc., 2012, vol. 134, pp. 10 682–10 692.CrossRefGoogle Scholar
  4. 4.
    Paluchowska, B., Lis, T., and Leciejewicz, Ja., Acta Crystallogr., Sect. C, 1994, vol. 50, p. 683.CrossRefGoogle Scholar
  5. 5.
    Klimek, B., Koziol, A.E., and Stepniak, K., Z. Kristallogr., 1986, vol. 174, p. 305.CrossRefGoogle Scholar
  6. 6.
    Koziol, A.E., Brzyska, W., Klimek, B., et al., J. Coord. Chem., 1989, vol. 20, p. 57.CrossRefGoogle Scholar
  7. 7.
    Paluchowska, B., Maurin, J.K., and Leciejewicz, Ja., Acta Crystallogr., Sect. C, 1996, vol. 52, p. 347.CrossRefGoogle Scholar
  8. 8.
    Paluchowska, B., Maurin, J.K., and Leciejewicz, Ja., Acta Crystallogr., Sect. C, 1997, vol. 53, p. 287.CrossRefGoogle Scholar
  9. 9.
    Li, X., Zheng, X., Jin, L., et al., J. Coord. Chem., 2000, vol. 51, p. 115.CrossRefGoogle Scholar
  10. 10.
    Li, X., Jin, L., Lu, S., and Zhang, J., J. Mol. Struct., 2002, vol. 604, p. 65.CrossRefGoogle Scholar
  11. 11.
    Zhuravlev, K.P., Vologzhanina, A.V., Kudryashova, V.A., et al., Polyhedron, 2013, vol. 56, p. 109.CrossRefGoogle Scholar
  12. 12.
    Melnic, S., Prodius, D., Shova, S., et al., Chem. J. Moldova, 2009, vol. 4, no. 2, pp. 60–67.Google Scholar
  13. 13.
    Turta, C., Melnic, S., Bettinelli, M., et al., Inorg. Chim. Acta, 2007, vol. 360, pp. 3047–3054.CrossRefGoogle Scholar
  14. 14.
    APEX2, Madison, Wisconsin (USA): Bruker AXS, 2007.Google Scholar
  15. 15.
    SAINT-Plus, version 6.01, Madison, Wisconsin (USA): Bruker AXS, 1998.Google Scholar
  16. 16.
    Sheldrick, G.M., SADABS, Madison, Wisconsin (USA): Bruker AXS, 2004.Google Scholar
  17. 17.
    Sheldrick, G.M., SHELXS97 and SHELXL97, Germany: Univ. of Göttingen, 1997.Google Scholar
  18. 18.
    Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, pp. 3–8.CrossRefGoogle Scholar
  19. 19.
    Blatov, V.A., Shevchenko, A.P., and Serezhkin, V.N., J. Appl. Crystallogr., 1999, vol. 32, no. 2, p. 377.CrossRefGoogle Scholar
  20. 20.
    Ghalla, H., Issaoni, N., Castillo, M.V., et al., Spectrochim. Acta, Part A, 2014, vol. 121, pp. 623–631.CrossRefGoogle Scholar
  21. 21.
    Uma, B., Das, S.J., Krishnan, S., and Baaz, B.M., J. Phys.: Condens. Matter, 2011, vol. 406, pp. 2834–2839.Google Scholar
  22. 22.
    Chakraborty, D. and Manogaran, S., Indian J. Chem. A, 1994, vol. 33, pp. 969–977.Google Scholar
  23. 23.
    Angell, C.L., Shepard, N., Yamaguchi, A., et al., Trans. Faraday Soc., 1957, vol. 53, pp. 589–600.CrossRefGoogle Scholar
  24. 24.
    Zwarich, R., Smolarch, J., and Goodman, L., J. Mol. Spectrosc., 1971, vol. 38, pp. 336–357.CrossRefGoogle Scholar
  25. 25.
    Scorn, D.W., J. Mol. Spectrosc., 1971, vol. 37, pp. 77–91.CrossRefGoogle Scholar
  26. 26.
    Cataliotti, R., Gallina, P., and Paliani, G., Spectrosc. Lett., 1975, vol. 8, pp. 799–804.CrossRefGoogle Scholar
  27. 27.
    Sension, R.J., Hudson, B., and Callis, P.R., J. Phys. Chem., 1990, vol. 94, pp. 4015–4025.CrossRefGoogle Scholar
  28. 28.
    Carnall, W.T., Goodman, G.L., Rajnak, K., and Rana, R.S., J. Chem. Phys., 1989, vol. 90, pp. 3443–3457.CrossRefGoogle Scholar
  29. 29.
    Volkov, S.V. and Yatsimirskii, K.B., Spektroskopiya rasplavlennykh solei (Spectroscopy of Molten Salts), Kiev: Naukova Dumka, 1977, pp. 126–133.Google Scholar
  30. 30.
    Hagan, P.C. and Cleveland, J.M., J. Inorg. Nucl. Chem., 1966, vol. 28, pp. 2905–2908.CrossRefGoogle Scholar
  31. 31.
    Friedman, H.A. and Toth, L.M., J. Inorg. Nucl. Chem., 1980, vol. 42, pp. 1347–1349.CrossRefGoogle Scholar
  32. 32.
    Silva, R.J. and Nitsche, H., Radiochim. Acta, 1995, vols. 70–71, pp. 377–396.Google Scholar
  33. 33.
    Lee, M.H., Park, Y.J., and Kim, W.H., J. Radioanal. Nucl. Chem., 2007, vol. 273, pp. 375–382.CrossRefGoogle Scholar
  34. 34.
    Stephanou, S.E., Nigon, J.P., and Penneman, R.A., J. Chem. Phys., 1953, vol. 21, no. 1, pp. 42–45.CrossRefGoogle Scholar
  35. 35.
    Fedosseev, A.M., Grigoriev, M.S., Budantseva, N.A., et al., C. R. Chim., 2010, vol. 13, pp. 834–848.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Fedoseev
    • 1
  • M. N. Sokolova
    • 1
  • M. S. Grigor’ev
    • 1
  • N. A. Budantseva
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations