Advertisement

Radiochemistry

, Volume 60, Issue 6, pp 563–572 | Cite as

Influence of the Redox Potential and Charge of f Element Ions on the Kinetics of Reactions Involving Them

  • V. P. ShilovEmail author
  • A. V. Gogolev
  • A. M. Fedoseev
Article
  • 10 Downloads

Abstract

Experimental data on the kinetics of reactions of lanthanide and actinide ions with ОН radicals, e aq , each other, and d element ions are analyzed. The reactions with ОН radicals are kinetically controlled, with the rate constants being independent of the redox potential of the ion. This is due to the fact that the ОН radical abstracts the H atom from Н2О in the hydration shell, which is followed by the charge transfer. The An4+ ions are oxidized with the formation of the An5+ ions, followed by their hydrolysis. The hydrated electrons e aq react with f element ions whose potential is less negative than–2.0 V, with the reaction being diffusion-controlled. The reactions of eaq with An4+ and AnO 2 2+ occur by the tunneling mechanism. The reactions of the ions with each other are kinetically controlled, with the rate constants depending on ΔЕ of the reaction. The correlation is broken in the case of formation of AnO 2 + –An4+ cation–cation complexes or of reactions involving the structure rearrangement. The stability of heptavalent ions in an alkaline solution decreases with an increase in the oxidation potential and with a decrease in the ion charge.

Keywords

lanthanides actinides potentials kinetics diffusion limits cation–cation complexes heptavalent ions stability in alkaline solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bratsch, S.G., J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 1, pp. 1–21.CrossRefGoogle Scholar
  2. 2.
    Kosyakov, V.N., Simakin, G.A., Baranov, A.A., and Timofeev, G.A., Radiokhimiya, 1977, vol. 19, no. 3, pp. 360–365.Google Scholar
  3. 3.
    Pikaev, A.K., Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 4, pp. 916–919.Google Scholar
  4. 4.
    Zehavi, D. and Rabani, J., J. Phys. Chem., 1971, vol. 75, no. 11, pp. 1738–1744.CrossRefGoogle Scholar
  5. 5.
    Pikaev, A.K., Sibirskaya, G.K., and Spitsyn, V.I., Dokl. Akad. Nauk SSSR, 1973, vol. 209, no. 5, pp. 1154–1157.Google Scholar
  6. 6.
    Faraggi, M. and Feder, A., J. Chem. Phys., 1972, vol. 56, no. 7, pp. 3294–3297.CrossRefGoogle Scholar
  7. 7.
    Golub, D., Cohen, H., and Meyerstein, D., J. Chem. Soc., Dalton Trans., 1985, no. 4, pp. 641–644.CrossRefGoogle Scholar
  8. 8.
    Pikaev, A.K., Shilov, V.P., and Fedoseev, A.M., Dokl. Akad. Nauk SSSR, 1981, vol. 260, no. 6, pp. 1407–1411.Google Scholar
  9. 9.
    Shilov, V.P., Pikaev, A.K., and Fedoseev, A.M., Khim. Vys. Energ., 1982, vol. 16, no. 1, pp. 89–90.Google Scholar
  10. 10.
    Shilov, V.P., Fedoseev, A.M., and Pikaev, A.K., Russ. Chem. Bull., 1982, vol. 31, no. 4, pp. 832–834.CrossRefGoogle Scholar
  11. 11.
    Schmidt, K.H., Gordon, S., Thompson, M., et al., Radiat. Phys. Chem., 1983, vol. 21, no. 3, pp. 321–328.Google Scholar
  12. 12.
    Shilov, V.P., Fedoseev, A.M., and Pikaev, A.K., Radiokhimiya, 1985, vol. 27, no. 1, pp. 127–130.Google Scholar
  13. 13.
    Lierse, Ch., Schmidt, K.H., and Sullivan, J.C., Radiochim. Acta, 1988, vols. 44/45, part I, pp. 71–72.Google Scholar
  14. 14.
    Gogolev, A.V., Shilov, V.P., Fedoseev, A.M., et al., Radiokhimiya, 1988, vol. 30, no. 6, pp. 761–766.Google Scholar
  15. 15.
    Pikaev, A.K., Shilov, V.P., and Spitsyn, V.I., Dokl. Akad. Nauk SSSR, 1977, vol. 232, no. 2, pp. 387–390.Google Scholar
  16. 16.
    Gordon, S., Mulac, W.A., Schmidt, K.H., et al., Inorg. Chem., 1978, vol. 17, no. 2, pp. 294–296.CrossRefGoogle Scholar
  17. 17.
    Shilov, V.P., Gogolev, A.V., and Fedoseev, A.M., Radiochemistry, 2012, vol. 54, no. 5, pp. 452–454.CrossRefGoogle Scholar
  18. 18.
    Shilov, V.P., Radiokhimiya, 1991, vol. 33, no. 6, pp. 26–29.Google Scholar
  19. 19.
    Fourest, B., Duplessis, J., and David, F., C. R. Acad. Sci., 1982, ser. 2, vol. 294, no. 19, pp. 1179–1181.Google Scholar
  20. 20.
    Henglein, A., Karmann, W., Roebke, K., and Beck, G., Makromol. Chem., 1966, vol. 92, no. 1, pp. 105–113.CrossRefGoogle Scholar
  21. 21.
    Berdnikov, V.M., Zh. Fiz. Khim., 1973, vol. 47, no. 11, pp. 2753–2761.Google Scholar
  22. 22.
    Swallow, A.J., Radiation Chemistry: An Introduction, Longman, 1973.Google Scholar
  23. 23.
    Gordon, S., Sullivan, J.C., Mulac, W.A., et al., in Proc. IV Tihany Symp. on Radiation Chemistry, Budapest: Akad. Kiado, 1977, pp. 753–759.Google Scholar
  24. 24.
    Sullivan, J.C., Gordon, S., Cohen, D., et al., J. Chem. Phys., 1976, vol. 80, no. 15, pp. 1684–1686.CrossRefGoogle Scholar
  25. 25.
    Pikaev, A.K., Gogolev, A.V., Shilov, V.P., and Fedoseev, A.M., Isotopenpraxis, 1990, vol. 26, no. 10, pp. 465–469.Google Scholar
  26. 26.
    Gogolev, A.V., Shilov, V.P., Fedoseev, A.M., and Pikaev, A.K., Radiokhimiya, 1990, vol. 32, no. 4, pp. 121–123.Google Scholar
  27. 27.
    Pikaev, A.K., Shilov, V.P., and Spitsyn, V.I., Russ. Chem. Bull., 1976, vol. 25, no. 12, p. 2651.CrossRefGoogle Scholar
  28. 28.
    Sullivan, J.C., Schmidt, K.H., Morss, L.R., et al., Inorg. Chem., 1988, vol. 27, no. 4, pp. 597–598.CrossRefGoogle Scholar
  29. 29.
    Hart, E.J. and Anbar, M., The Hydrated Electron, New York: Wiley–Interscience, 1979.Google Scholar
  30. 30.
    Kritchevsky, E.S. and Hindman, J.C., J. Am. Chem. Soc., 1949, vol. 71, no. 6, pp. 2096–2102.CrossRefGoogle Scholar
  31. 31.
    Zachariasen, W.H., The Actinide Elements, Seaborg, G.T. and Katz, J.J., Eds., New York, 1954. Translated under the title Aktinidy, Moscow: Izd. Inostrannoi Literatury, 1955, pp. 623–646.Google Scholar
  32. 32.
    Mitchell, J., Jr. and Smith, D.M., Aquametry: a Treatise on Methods for the Determination of Water, New York: Wiley, 1977, 2nd ed. Translated under the title Akvametriya, Moscow: Khimiya. 1980, p. 8.Google Scholar
  33. 33.
    Ekstrom, A., Inorg. Chem., 1974, vol. 13, no. 9, pp. 2237–2241.CrossRefGoogle Scholar
  34. 34.
    Koltunov, V.S. and Tikhonov, M.F., Zh. Fiz. Khim., 1974, vol. 48, no. 4, pp. 860–864.Google Scholar
  35. 35.
    Rabideau, S.W., J. Am. Chem. Soc., 1957, vol. 79, no. 24, pp. 6350–6353.CrossRefGoogle Scholar
  36. 36.
    Coleman, J.S., Inorg. Chem., 1963, vol. 2, no. 1, pp. 53–57.CrossRefGoogle Scholar
  37. 37.
    Kern, D.M.H. and Orlemann, E.F., J. Am. Chem. Soc., 1949, vol. 71, no. 6, pp. 2102–2106.CrossRefGoogle Scholar
  38. 38.
    Steel, H. and Taylor, R.J., Inorg. Chem., 2007, vol. 46, no. 16, pp. 6311–6318.CrossRefGoogle Scholar
  39. 39.
    Woods, M. and Sullivan, J.C., Inorg. Chem., 1974, vol. 13, no. 11, pp. 2774–2775.CrossRefGoogle Scholar
  40. 40.
    Fulton, R.B. and Newton, T.W., J. Phys. Chem., 1970, vol. 74, no. 8, pp. 1661–1669.CrossRefGoogle Scholar
  41. 41.
    Sullivan, J.C. and Thompson, R.C., Inorg. Chem., 1967, vol. 6, no. 10, pp. 1795–1798.CrossRefGoogle Scholar
  42. 42.
    Newton, T.W. and Fulton, R.B., J. Phys. Chem., 1970, vol. 74, no. 14, pp. 2797–2801.CrossRefGoogle Scholar
  43. 43.
    Hindman, J.C., Sullivan, J.C., and Cohen, D., J. Am. Chem. Soc., 1958, vol. 80, no. 8, pp. 1812–1814.CrossRefGoogle Scholar
  44. 44.
    Newton, T.W., J. Phys. Chem., 1970, vol. 74, no. 8, pp. 1655–1661.CrossRefGoogle Scholar
  45. 45.
    Connick, R.E., J. Am. Chem. Soc., 1949, vol. 71, no. 5, pp. 1528–1533.CrossRefGoogle Scholar
  46. 46.
    Gogolev, A.V., Shilov, V.P., and Pikaev, A.K., Khim. Vys. Energ., 1997, vol. 31, no. 2, pp. 71–74.Google Scholar
  47. 47.
    Ekstrom, A. and McLaren, A., J. Inorg. Nucl. Chem., 1972, vol. 34, no. 6, pp. 2015–2022.CrossRefGoogle Scholar
  48. 48.
    Rabideau, S.W. and Kline, R.J., J. Phys. Chem., 1958, vol. 62, no. 5, pp. 617–620.CrossRefGoogle Scholar
  49. 49.
    Koltunov, V.S. and Marchenko, V.I., Radiokhimiya, 1974, vol. 16, no. 4, pp. 496–502.Google Scholar
  50. 50.
    Blokhin, N.B., Ermakov, V.A., and Rykov, A.G., Radiokhimiya, 1974, vol. 16, no. 4, pp. 551–553.Google Scholar
  51. 51.
    Blokhin, N.B., Ermakov, V.A., and Rykov, A.G., Radiokhimiya, 1974, vol. 16, no. 3, pp. 355–360.Google Scholar
  52. 52.
    Randle, T.H. and Kuhn, A.T., J. Chem. Soc., Faraday Trans., Part I, 1983, vol. 79, no. 8, pp. 1741–1756.CrossRefGoogle Scholar
  53. 53.
    Ekstrom, A. and Johnson, D.A., J. Inorg. Nucl. Chem., 1974, vol. 36, no. 11, pp. 2557–2562.CrossRefGoogle Scholar
  54. 54.
    Newton, T.W. and Baker, F.B., J. Phys. Chem., 1963, vol. 67, no. 7, pp. 1425–1432.CrossRefGoogle Scholar
  55. 55.
    Krot, N.N., Mefod’eva, M.P., Shilov, V.P., and Gel’man, A.D., Radiokhimiya, 1970, vol. 12, no. 3, pp. 471–477.Google Scholar
  56. 56.
    Nikolaevskii, V.B., Shilov, V.P., Krot, N.N., and Peretrukhin, V.F., Radiokhimiya, 1975, vol. 17, no. 3, pp. 431–433.Google Scholar
  57. 57.
    Pikaev, A.K. and Shilov, V.P., Russ. Chem. Bull., 1978, vol. 27, no. 9, pp. 1886–1889.CrossRefGoogle Scholar
  58. 58.
    Sullivan, J.C., Zielen, A.J., and Hindman, J.C., J. Am. Chem. Soc., 1960, vol. 82, no. 20, pp. 5288–5292.CrossRefGoogle Scholar
  59. 59.
    Newton, T.W., J. Phys. Chem., 1958, vol. 62, no. 8, pp. 943–947.CrossRefGoogle Scholar
  60. 60.
    Rykov, A.G. and Yakovlev, G.N., Radiokhimiya, 1966, vol. 8, no. 1, pp. 20–26.Google Scholar
  61. 61.
    Rykov, A.G., Timofeev, G.A., and Chistyakov, V.M., Radiokhimiya, 1969, vol. 11, no. 4, pp. 455–458.Google Scholar
  62. 62.
    Rabideau, S.W., J. Am. Chem. Soc., 1953, vol. 75, no. 4, pp. 798–801.CrossRefGoogle Scholar
  63. 63.
    Baker, F.B., Newton, T.W. and Kahn, M., J. Phys. Chem., 1960, vol. 64, no. 1, pp. 109–112.CrossRefGoogle Scholar
  64. 64.
    Ekstrom, A. and McLaren, A.B., J. Inorg. Nucl. Chem., 1971, vol. 33, no. 10, pp. 3511–3520.CrossRefGoogle Scholar
  65. 65.
    Newton, T.W., J. Phys. Chem., 1959, vol. 63, no. 9, pp. 1493–1497.CrossRefGoogle Scholar
  66. 66.
    Rykov, A.G., Timofeev, G.A., and Yakovlev, G.N., Radiokhimiya, 1969, vol. 11, no. 4, pp. 413–418.Google Scholar
  67. 67.
    Zaitsev, I.D. and Aseev, G.G., Fiziko-khimicheskie svoistva binarnykh i mnogokomponentnykh rastvorov neorganicheskikh veshchestv: Spravochnik (Physicochemical Properties of Binary and Multicomponent Solutions of Inorganic Substances: Handbook), Moscow: Khimiya, 1988, p.175.Google Scholar
  68. 68.
    Shilov, V.P., Russ. J. Phys. Chem. A, 1996, vol. 70, no. 10, pp. 1780–1782.Google Scholar
  69. 69.
    Krot, N.N., Gel’man, A.D., Mefod’eva, M.P., et al., Semivalentnoe sostoyanie neptuniya, plutoniya, ameritsiya (Heptavalent State of Neptunium, Plutonium, and Americium), Moscow: Nauka, 1977.Google Scholar
  70. 70.
    Komkov, Yu.A. and Krot, N.N., Radiokhimiya, 1970, vol. 12, no. 2, pp. 227–232.Google Scholar
  71. 71.
    Larsen, R.P. and Ross, L.E., Anal. Chem., 1959, vol. 31, no. 2, pp. 176–177.CrossRefGoogle Scholar
  72. 72.
    Veprek-Šiška, J., Ettel, V., and Regner, A., J. Inorg. Nucl. Chem., 1964, vol. 26, no. 8, pp. 1476–1477.CrossRefGoogle Scholar
  73. 73.
    Pikaev, A.K., Shilov, V.P., Krot, N.N., et al., Dokl. Akad. Nauk SSSR, 1970, vol. 190, no. 2, pp. 387–389.Google Scholar
  74. 74.
    Garnov, A.Yu., Krot, N.N., Bessonov, A.A., and Perminov, V.P., Radiokhimiya, 1996, vol. 38, no. 5, pp. 428–433.Google Scholar
  75. 75.
    Shilov, V.P., Yusov, A.B., and Fedoseev, A.M., Radiochemistry, 2009, vol. 51, no. 2, pp. 138–139.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. P. Shilov
    • 1
    Email author
  • A. V. Gogolev
    • 1
  • A. M. Fedoseev
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations