Advertisement

Radiochemistry

, Volume 60, Issue 5, pp 498–506 | Cite as

Synthesis and Crystal Structures of New Layered Uranyl Compounds Containing Dimers [(UO2)2O8] of Edge-Linked Pentagonal Bipyramids

  • E. V. NazarchukEmail author
  • D. O. Charkin
  • O. I. Siidra
  • V. V. Gurzhiy
Article
  • 12 Downloads

Abstract

Two new U(VI) compounds, [((CH3)2CHNH3)(CH3NH3)][(UO2)2(CrO4)3] (1) and [CH3NH3][(UO2)· (SO4)(OH)] (2), were prepared by combining hydrothermal synthesis with isothermal evaporation. Compound 1 crystallizes in the monoclinic system, space group Р21, a = 9.3335(19), b = 10.641(2), c = 9.436(2) Å, β = 94.040(4)°. Compound 2 crystallizes in the rhombic system, space group Рbca, a = 11.5951(8), b = 9.2848(6), c = 14.5565(9) Å. The structures of the compounds were solved by the direct methods and refined to R1 = 0.041 [for 5565 reflections with Fo > 4σ(Fo)] and 0.033 [for 1792 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. Single crystal measurements were performed at 296 and 100 K for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)2(CrO4)3]2– layers, and that of 2, on [(UO2)(SO4)(OH)] layers. Both kinds of layers are constructed in accordance with a common principle and are topologically similar. Protonated isopropylamine and methylamine molecules are arranged between the layers in 1, and protonated methylamine molecules, in 2. Compound 1 is the second known example of a U(VI) compound templated with two different organic molecules simultaneously.

Keywords

uranyl compounds crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Chemistry of the Actinide and Transactinide Elements, Morss, L.R., Edelstein, N.M., and Fuger, J., Eds., Netherlands: Springer, 2006, 3rd ed., p. 3474.Google Scholar
  2. 2.
    Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., and Tananaev, I.G., Eds., Amsterdam: Elsevier, 2007, p.494.Google Scholar
  3. 3.
    Nazarchuk, E.V., Siidra, O.I., and Kayukov, R.A., Radiochemistry, 2016, vol. 58, no. 6, pp. 571–577.CrossRefGoogle Scholar
  4. 4.
    Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., and Zadoy, A.I., Inorg. Chem. Commun., 2015, vol. 62, pp. 15–18.CrossRefGoogle Scholar
  5. 5.
    Siidra, O.I., Nazarchuk, E.V., and Krivovichev, S.V., Z. Kristallogr., 2012, vol. 227, pp. 530–535.CrossRefGoogle Scholar
  6. 6.
    Siidra, O.I., Nazarchuk, E.V., Kayukov, R.A., et al., Z. Anorg. Allg. Chem., 2013, vol. 639, pp. 2302–2307.CrossRefGoogle Scholar
  7. 7.
    Siidra, O.I., Nazarchuk, E.V., Sysoeva, E.V., et al., Eur. J. Inorg. Chem., 2014, vol. 2014, pp. 5495–5498.CrossRefGoogle Scholar
  8. 8.
    Siidra, O.I., Nazarchuk, E.V., and Krivovichev, S.V., J. Solid State Chem., 2012, vol. 187, pp. 286–290.CrossRefGoogle Scholar
  9. 9.
    Krivovichev, S.V., Crystallogr. Rev., 2004, vol. 10, pp. 185–232.CrossRefGoogle Scholar
  10. 10.
    Krivovichev, S.V., Structural Crystallography of Inorganic Oxysalts, Oxford: Oxford Univ. Press, 2008, p.308.Google Scholar
  11. 11.
    Krivovichev, S.V., Comprehensive Inorganic Chemistry, Reedijk, J. and Poeppelmeier, K., Eds., Oxford: Elsevier, 2013, pp. 611–640.Google Scholar
  12. 12.
    Burns, P.C., Miller, M.L., and Ewing, R.C., Can. Mineral., 1996, vol. 34, pp. 845–880.Google Scholar
  13. 13.
    Lussier, A.J., Lopez, R.A.K., and Burns, P.C., Can. Mineral., 2016, vol. 54, pp. 177–283.CrossRefGoogle Scholar
  14. 14.
    Ling, J., Sigmon, G.E., and Burns, P.C., J. Solid State Chem., 2009, vol. 182, pp. 402–408.CrossRefGoogle Scholar
  15. 15.
    Krivovichev, S.V., Gurzhiy, V.V., Tananaev, I.G., and Myasoedov, B.F., Z. Kristallogr., 2009, vol. 224, pp. 316–324.CrossRefGoogle Scholar
  16. 16.
    Gurzhiy, V.V., Tyumentseva, O.S., Krivovichev, S.V., and Tananaev, I.G., J. Solid State Chem., 2017, vol. 248, pp. 126–133.CrossRefGoogle Scholar
  17. 17.
    Thomas, P.M., Norquist, A.J., Doran, M.B., and O’Hare, D., J. Mater. Chem., 2003, vol. 13, pp. 88–92.CrossRefGoogle Scholar
  18. 18.
    Doran, M.B., Norquist, A.J., and O’Hare, D., Inorg. Chem., 2003, vol. 42, pp. 6989–6995.CrossRefGoogle Scholar
  19. 19.
    Doran, M.B., Norquist, A.J., Stuart, C.L., and O’Hare, D., Acta Crystallogr., Sect. E, 2004, vol. 60, pp. 996–998.CrossRefGoogle Scholar
  20. 20.
    Bharara, M.S. and Gorden, A.E.V., Dalton Trans., 2010, vol. 39, pp. 3557–3559.CrossRefGoogle Scholar
  21. 21.
    Siidra, O.I., Nazarchuk, E.V., and Krivovichev, S.V., Z. Anorg. Allg. Chem., 2012, vol. 638, pp. 976–981.CrossRefGoogle Scholar
  22. 22.
    Siidra, O.I., Nazarchuk, E.V., Bocharov, S., et al., Acta Crystallogr., Sect. B, 2017, vol. 73, pp. 101–111.CrossRefGoogle Scholar
  23. 23.
    Mereiter, K., Tschermaks Miner. Petrogr. Mitt., 1982, vol. 30, pp. 47–57.CrossRefGoogle Scholar
  24. 24.
    Unruh, D.K., Baranay, M., Pressprich, L., et al., J. Solid State Chem., 2012, vol. 186, pp. 158–164.CrossRefGoogle Scholar
  25. 25.
    Serezhkina, L.B., Peresypkina, E.V., Virovets, A.V., et al., Crystallogr. Rep., 2009, vol. 54, pp. 259–266.CrossRefGoogle Scholar
  26. 26.
    Siidra, O.I., Nazarchuk, E.V., Suknotova, A.N., et al., Inorg. Chem., 2013, vol. 52, pp. 4729–4735.CrossRefGoogle Scholar
  27. 27.
    APEX2, version 2014.11-0, Madison, Wisconsin (USA): Bruker AXS, 2014.Google Scholar
  28. 28.
    Sheldrick, G.M., Acta Crystallogr., Sect. A, 2015, vol. 71, pp. 3–8.CrossRefGoogle Scholar
  29. 29.
    Burns, P.C., Ewing, R.C., and Hawthorne, F.C., Can. Miner., 1997, vol. 35, pp. 1551–1570.Google Scholar
  30. 30.
    Brown, I.D. and Altermatt, D., Acta Crystallogr., Sect. B, 1985, vol. 41, pp. 244–247.CrossRefGoogle Scholar
  31. 31.
    Sykora, R.E., McDaniel, S.M., and Albrecht-Schmidt, T.E., J. Solid State Chem., 2004, vol. 177, pp. 1431–1436.CrossRefGoogle Scholar
  32. 32.
    Gurzhiy, V.V., Kovrugin, V.M., Tyumentseva, O.S., et al., J. Solid State Chem., 2015, vol. 229, pp. 32–40.CrossRefGoogle Scholar
  33. 33.
    Siidra, O.I., Nazarchuk, E.V., and Krivovichev, S.V., Eur. J. Inorg. Chem., 2012, vol. 2012, no. 2, pp. 194–197.CrossRefGoogle Scholar
  34. 34.
    Jouffret, L., Shao, Z., Rivenet, M., and Abraham, F., J. Solid State Chem., 2010, vol. 183, pp. 2290–2297.CrossRefGoogle Scholar
  35. 35.
    Kovrugin, V.M., Gurzhiy, V.V., and Krivovichev, S.V., Struct. Chem., 2012, vol. 23, pp. 2003–2017.CrossRefGoogle Scholar
  36. 36.
    Alekseev, E.V., Krivovichev, S.V., and Depmeier, W., Radiochemistry, 2008, vol. 50, no. 5, pp. 445–449.CrossRefGoogle Scholar
  37. 37.
    Gurzhiy, V.V., Tyshchenko, D.N., Krivovichev, S.V., and Tananaev, I.G., Z. Kristallogr., 2014, vol. 229, pp. 368–377.Google Scholar
  38. 38.
    Siidra, O.I., Nazarchuk, E.V., Petrunin, A.A., et al., Inorg. Chem., 2012, vol. 51, pp. 9162–9164.CrossRefGoogle Scholar
  39. 39.
    Krivovichev, S.V., Gurzhiy, V.V., Tananaev, I.G., and Myasoedov, B.F., Dokl. Phys. Chem., 2006, vol. 409, pp. 228–232.CrossRefGoogle Scholar
  40. 40.
    Ok, K.M., Baek, J., Halasyamani, P.S., and O’Hare, D., Inorg. Chem., 2006, vol. 45, pp. 10207–10214.CrossRefGoogle Scholar
  41. 41.
    Halasyamani, P.S., Francis, R.J., Walker, S.M., and O’Hare, D., Inorg. Chem., 1999, vol. 38, pp. 271–275.CrossRefGoogle Scholar
  42. 42.
    Serezhkina, L.B., Trunov, V.K., Kholodkovskaya, L.N., et al., Koord. Khim., 1990, vol. 16, pp. 1288–1291.Google Scholar
  43. 43.
    Serezhkin, V.N., Boiko, N.V., and Trunov, V.K., Zh. Strukt. Khim., 1982, vol. 23, pp. 121–124.Google Scholar
  44. 44.
    Doran, M.B., Cockbain, B.E., and O’Hare, D., Dalton Trans., 2005, pp. 1774–1780.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Nazarchuk
    • 1
    Email author
  • D. O. Charkin
    • 2
  • O. I. Siidra
    • 1
  • V. V. Gurzhiy
    • 1
  1. 1.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Chemical FacultyMoscow State UniversityMoscowRussia

Personalised recommendations