Advertisement

Radiochemistry

, Volume 60, Issue 5, pp 470–487 | Cite as

Extraction of Radionuclides from Alkaline and Carbonate Media

  • I. V. SmirnovEmail author
  • M. D. Karavan
  • M. V. Logunov
  • I. G. Tananaev
  • B. F. Myasoedov
Article
  • 26 Downloads

Abstract

The review substantiates the desirability of developing spent nuclear fuel reprocessing technologies alternative to the Purex process. The practical use of radiochemical technologies based on alkaline and carbonate media, such as extraction of radiocesium from alkaline high-level waste and CARBEX process, is considered. Extraction of actinides with aliphatic amines, β-diketones, phenol derivatives (alkylpyrocatechols, aminomethylphenols, alkylphenol oligomers, calixarenes), and carboxylic acids, as well as extraction in two-phase aqueous systems based on water-soluble polymers, is discussed. The extraction of technetium is considered separately.

Keywords

radionuclides extraction alkaline carbonate media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www.aem-group.ru/mediacenter/informatoriy/atomnaya-energetika-v-mire.html.Google Scholar
  2. 2.
    Tananaev, I.G. and Myasoedov, B.F., Mezhdunar. Ekol. Zh. EKOS, 2009, no. 2, p.4.Google Scholar
  3. 3.
    Kirillov, S.N., Batorshin, G.Sh., and Tananaev, I.G., Abstracts of Papers, Management of Spent Fuel from Nuclear Power Reactors—An Integrated Approach to the Back-End of the Fuel Cycle, Vienna, 2015, p.23.Google Scholar
  4. 4.
    Tananaev, I.G. and Myasoedov, B.F., Zh. Ross. Khim. O–va. im. D.I. Mendeleeva, 2010, vol. LIV, no. 3, p.6.Google Scholar
  5. 5.
    Safiulina, A.M., Han Win Soe, Nazarov, E.O., et al., Abstracts of Papers, Shestaya Rossiiskaya konf. po radiokhimii “Radiokhimiya-2009” (Sixth Russian Conf. on Radiochemistry “Radiochemistry-2009”), Moscow, 2009, p.130.Google Scholar
  6. 6.
    Samsonov, M.D., Trofimov, T.I., Vinokurov, S.E., et al., Sverkhkrit. Flyuidy, 2013, vol. 82, p.61.Google Scholar
  7. 7.
    Tananaev, I.G. and Myasoedov, B.F., Radiochemistry, 2016, vol. 58, no. 3, pp. 257–264.CrossRefGoogle Scholar
  8. 8.
    Batorshin, G.Sh., Kirillov, S.N., Smirnov, I.S., et al., Vopr. Radiats. Bezopasn., 2015, no. 3, p.30.Google Scholar
  9. 9.
    Kozlov, P.V., Remizov, M.B., Logunov, M.V., and Koltyshev, V.K., Vopr. Radiats. Bezopasn., 2013, no. 2, p.34.Google Scholar
  10. 10.
    Tananaev, I.G., Minerals as Advanced Materials: Book of Articles, Krivovichev, S.V., Ed., Luxemburg: Springer, 2008, vol. 1, p.219.CrossRefGoogle Scholar
  11. 11.
    Logunov, M.V., Karpov, V.I., and Tananaev, I.G., Vopr. Radiats. Bezopasn., 2011, no. 4, p.18.Google Scholar
  12. 12.
    Logunov, M.V., Karpov, V.I., Druzhinina, N.E., and Tananaev, I.G., Vopr. Radiats. Bezopasn., 2011, no. 1, p.15.Google Scholar
  13. 13.
    Rovnyi, S.I. and Shevtsev, P.P., Vopr. Radiats. Bezopasn., 2007, no. 2, p.5.Google Scholar
  14. 14.
    Zilberman, B.Ya., Puzikov, E.A., Ryabkov, D.V., et al., At. Energ., 2009, vol. 107, p.273.CrossRefGoogle Scholar
  15. 15.
    Rodin, A.V., Belova, E.V., Nazin, E.R., et al., Abstracts of Papers, Int. Conf. on Nonisothermal Phenomena & Processes: from Thermal Explosion Theory to Structural Macro Kinetics, Chernogolovka, 2011, p.107.Google Scholar
  16. 16.
    Rodin, A.V., Nazin, E.R., Zachinyaev, G.M., et al., Vopr. Radiats. Bezopasn., 2011, no. 3, p.45.Google Scholar
  17. 17.
    Nazin, E.R., Zachinyaev, G.M., Rodin, A.V., et al., Vopr. Radiats. Bezopasn., 2013, no. 2, p.16.Google Scholar
  18. 18.
    Belova, E.V., Rodin, A.V., Tkhorzhnitskii, G.P., and Danilin, D.I., Abstracts of Papers, Vserossiiskaya konferentsiya “Radiokhimiya–nauka nastoyashchego i budushchego,” posvyashchennaya 100-letiyu so dnya rozhdeniya An.N. Nesmeyanova (All-Russia Conf. “Radiochemistry—Science of the Present and Future,” Dedicated to the 100th Anniversary of An.N. Nesmeyanov’s Birthday), Moscow, 2011, p.59.Google Scholar
  19. 19.
    Egorov, G.F., Belova, E.V., Tkhorzhnitskii, G.P., et al., Vopr. Radiats. Bezopasn., 2010, no. 4, p.32.Google Scholar
  20. 20.
    Egorov, G.F., Belova, E.V., Tkhorzhnitskii, G.P., and Tananaev, I.G., Abstracts of Papers, Mezhdunarodnyi simpozium po sorbtsii i ekstraktsii (Int. Symp. on Sorption and Extraction), Vladivostok, 2008, p.159.Google Scholar
  21. 21.
    Egorov, G.F., Belova, E.V., Tkhorzhnitskii, G.P., and Tananaev, I.G., Abstracts of Papers, Mezhdunarodnyi simpozium po sorbtsii i ekstraktsii (Int. Symp. on Sorption and Extraction), Vladivostok, 2008, p.162.Google Scholar
  22. 22.
    Egorov, G.F., Belova, E.V., Danilin, D.I., and Smirnov, A.V., Abstracts of Papers, Mezhdunarodnyi simpozium po sorbtsii i ekstraktsii (Int. Symp. on Sorption and Extraction), Vladivostok, 2008, p.78.Google Scholar
  23. 23.
    Melent’ev, A.B., Mashkin, A.N., Misharin, V.A., et al., Vopr. Radiats. Bezopasn., 2011, no. 1, p.51.Google Scholar
  24. 24.
    Miller, R.L., Pinkerton, A.B., Hurlburt, P.K., and Abney, K.D., Solvent Extr. Ion Exch., 1995, vol. 13, p.813.CrossRefGoogle Scholar
  25. 25.
    Patent US 5 603 074, 1997.Google Scholar
  26. 26.
    Rais, J., Selucký, P., Šístková, N.V., and Alexová, J., Sep. Sci. Technol., 1999, vol. 34, p. 2865.CrossRefGoogle Scholar
  27. 27.
    Izatt, R.M., Lamb, J.D., Hawkins, R.T., et al., J. Am. Chem. Soc., 1983, vol. 105, p. 1782.CrossRefGoogle Scholar
  28. 28.
    Izatt, S.R., Hawkins, R.T., Christensen, J.J., and Izatt, R.M., J. Am. Chem. Soc., 1985, vol. 107, p.63.CrossRefGoogle Scholar
  29. 29.
    Koide, Y., Oka, T., Imamura, A., et al., Bull. Chem. Soc. Jpn., 1993, vol. 66, p. 2137.CrossRefGoogle Scholar
  30. 30.
    Dozol, J.F. and Ludwig, R., Ion Exchange and Solvent Extraction, Moyer, B.A., Ed., Boca Raton, FL: CRC, 2010, p.195.Google Scholar
  31. 31.
    Moyer, B.A., Bazelaire, E., Bonnesen, P.V., et al., FY 2005 Annual Report, Environmental Management Science Program, Project #73803.Google Scholar
  32. 32.
    Delmau, L.H., Berkel, G.J.V., Bonnesen, P.V., and Moyer, B.A., ORNLffM-19 991 209, 1999.Google Scholar
  33. 33.
    Bonnesen, P.V., Delmau, L.H., Moyer, B.A., and Lumetta, G.J., Solvent Extr. Ion Exch., 2003, vol. 21, p.141.CrossRefGoogle Scholar
  34. 34.
    Bonnesen, P.V., Delmau, L.H., Moyer, B.A., and Leonard, R.A., Solvent Extr. Ion Exch., 2000, vol. 18, p. 1079.CrossRefGoogle Scholar
  35. 35.
    Delmau, L.H., Bonnesen, P.V., and Moyer, B.A., Hydrometallurgy, 2004, vol. 72, p.9.CrossRefGoogle Scholar
  36. 36.
    Swancutt, K.L., Cullen, T.D., Mezyk, S.P., et al., Solvent Extr. Ion Exch., 2011, vol. 29, p.106.CrossRefGoogle Scholar
  37. 37.
    Leonard, R.A., Conner, C., Liberatore, M.W., et al., Sep. Sci. Technol., 2001, vol. 36, p.743.CrossRefGoogle Scholar
  38. 38.
    Leonard, R.A., Aase, S.B., Arafat, H.A., et al., Solvent Extr. Ion Exch., 2003, vol. 21, p.505.CrossRefGoogle Scholar
  39. 39.
    Leonard, R.A., Aase, S.B., Arafat, H.A., et al., ANL-02/22, 2002}Google Scholar
  40. 40.
    Norato, M.A., Beasley, M.H., Campbell, S.G., et al., Sep. Sci. Technol., 2003, vol. 38, p. 2647.CrossRefGoogle Scholar
  41. 41.
    Engle, N.L., Bonnesen, P.V., Tomkins, B.A., et al., Solvent Extr. Ion Exch., 2004, vol. 22, p.611.CrossRefGoogle Scholar
  42. 42.
    Moyer, B.A., Bonnesen, P.V., Delmau, L.H., et al., in WM2011 Conf., Phoenix, AZ, 2011.Google Scholar
  43. 43.
    Bazelaire, E., Bonnesen, P.V., Delmau, L.H., et al., Tetrahedron Lett., 2003, vol. 44, p. 5397.CrossRefGoogle Scholar
  44. 44.
    Bazelaire, E., Bonnesen, P.V., Delmau, L.H., et al., Solvent Extr. Ion Exch., 2004, vol. 22, p.637.CrossRefGoogle Scholar
  45. 45.
    Harmon, B.W., Ensor, D.D., Delmau, L.H., and Moyer, B.A., Solvent Extr. Ion Exch., 2007, vol. 25, no. 3, p.373.CrossRefGoogle Scholar
  46. 46.
    Delmau, L.H., Haverlock, T.J., Bazelaire, E., et al., Solvent Extr. Ion Exch., 2009, vol. 27, p.172.CrossRefGoogle Scholar
  47. 47.
    Delmau, L.H., Birdwell, J.F., McFarlane, J., and Moyer, B.A., Solvent Extr. Ion Exch., 2010, vol. 28, p.19.CrossRefGoogle Scholar
  48. 48.
    Law, J., Peterman, D., Riddle, C., et al., in ICEM2007: Proc. 11th Int. Conf. on Environmental Remediation and Radioactive Waste Management, New York: Am. Soc. Mechanical Engineers, 2009, parts A, B, p.525.Google Scholar
  49. 49.
    Logunov, M.V., Bugrov, K.V., Ivanov, I.B., and Yakovlev, N.G., Vopr. Radiats. Bezopasn., 2016, no. 2, p.15.Google Scholar
  50. 50.
    Delmau, L.H., Bonnesen, P.V., Engle, N.L., et al., Solvent Extr. Ion Exch., 2006, vol. 24, p.197.CrossRefGoogle Scholar
  51. 51.
    Chao Xu, Jianchen Wang, and Jing Chen, Solvent Extr. Ion Exch., 2012, vol. 30, no. 6, p.623.CrossRefGoogle Scholar
  52. 52.
    Stepanov, S.I., Boyarintsev, A.V., Vazhenkov, M.V., et al., Zh. Ross. Khim. O–va. im. D.I. Mendeleeva, 2010, vol. LIV, no. 3, p.25.Google Scholar
  53. 53.
    Stepanov, S.I., Han Win Soe, San Htun, et al., Dokl. Chem., 2008, vol. 423, p.276.CrossRefGoogle Scholar
  54. 54.
    Vazhenkov, M.V., Boyarintsev, M.V., Stepanov, S.I., and Chekmarev, A.M., Usp. Khim. Khim. Tekhnol.: Sb. Nauchn. Tr. Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2008, vol. XXII, no. 8 (88), pp. 38–41.Google Scholar
  55. 55.
    Vazhenkov, M.V., Stepanov, S.I., Boyarintsev, M.V., and Chekmarev, A.M., Usp. Khim. Khim. Tekhnol.: Sb. Nauchn. Tr. Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2009, vol. XXIII, no. 9 (102), pp. 25–30.Google Scholar
  56. 56.
    Stepanov, S.I., Boyarintsev, A.V., and Chekmarev, A.M., Dokl. Chem., 2009, vol. 427, part 2, p.202.CrossRefGoogle Scholar
  57. 57.
    Stepanov, S.I. and Chekmarev, A.M., Ekstraktsiya redkikh metallov solyami chetvertichnykh ammonievykh osnovanii (Extraction of Rare Metals with Quaternary Ammonium Salts), Moscow: IzdAT, 2004.Google Scholar
  58. 58.
    Stepanov, S.I., Boyarintsev, A.V., San Htun, et al., Dokl. Chem., 2015, vol. 460, p.41.CrossRefGoogle Scholar
  59. 59.
    Bessonov, A.A., Budantseva, N.A., Gelis, A.V., et al., Report PNNL-11625, 1997.Google Scholar
  60. 60.
    Nair, G.M., Chander, K., and Joshi, J.K., Radiochim. Acta, 1982, vol. 30, no. 1, p.37.CrossRefGoogle Scholar
  61. 61.
    Moskvin, A.I., Radiokhimiya, 1971, vol. 13, no. 5, p.681.Google Scholar
  62. 62.
    Rabideau, S.W. and Lemons, J.F., J. Am. Chem. Soc., 1951, vol. 73, no. 5, p. 2895.CrossRefGoogle Scholar
  63. 63.
    Metivier, H. and Guillaumont, G., Radiochem. Radioanal. Lett., 1972, vol. 10, no. 2, p.27.Google Scholar
  64. 64.
    Pazukhin, E.M. and Kudryavtsev, E.G., Radiokhimiya, 1990, vol. 32, no. 4, p.18.Google Scholar
  65. 65.
    Sullivan, J.C. and Hindman, J.S., J. Phys. Chem., 1959, vol. 63, no. 8, p. 1332.CrossRefGoogle Scholar
  66. 66.
    Dellesite, A. and Baybarz, R.D., J. Inorg. Nucl. Chem., 1969, vol. 31, no. 11, p. 2201.CrossRefGoogle Scholar
  67. 67.
    Martin, B., Kikindai, T., and Gourisse, D., Report CEAN-1044, 1968.Google Scholar
  68. 68.
    Starik, I.E. and Ginzburg, F.L., Radiokhimiya, 1962, vol. 4, no. 3, p.308.Google Scholar
  69. 69.
    Myasoedov, B.F., Guseva, L.I., Lebedev, I.A., et al., in Analiticheskaya khimiya transplutonievykh elementov (Analytical Chemistry of Transplutonium Elements), Moscow: Nauka, 1972, p.54.Google Scholar
  70. 70.
    Causson, A., Abazli, H., and Nectoux, F., Abstracts of Papers, Actinides: Int. Conf., Provence: CAE, 1985, p.97.Google Scholar
  71. 71.
    Pershin, A.S. and Sapozhnikova, T.V., J. Radioanal. Nucl. Chem., 1990, vol. 143, no. 2, p.455.CrossRefGoogle Scholar
  72. 72.
    Zubarev, V.G. and Krot, N.N., Radiokhimiya, 1982, vol. 24, no. 3, p.319.Google Scholar
  73. 73.
    Sevost’yanova, E.P. and Khalturin, G.V., Radiokhimiya, 1976, vol. 18, no. 6, p.870.Google Scholar
  74. 74.
    Nitsche, H. and Edelstein, N.N., Radiochim. Acta, 1989, vol. 39, no. 1, p.23.Google Scholar
  75. 75.
    Dam, J.R. and Kraus, K.A., Report CL-P-404, 1945.Google Scholar
  76. 76.
    Dam, J.R. and Kraus, K.A., Report CL-P-414, 1945.Google Scholar
  77. 77.
    Kraus, K.A. and Dam, J.R., in National Nuclear Energy, Div. 14B, New York: McGraw-Hill, 1949, paper 4.15, p.345.Google Scholar
  78. 78.
    Sullivan, J.C., Choppin, G.R., and Rao, L.F., Radiochim. Acta, 1991, vol. 54, no. 1, p.17.CrossRefGoogle Scholar
  79. 79.
    Gel’man, A.D. and Zaitseva, V.P., Radiokhimiya, 1965, vol. 7, no. 1, p.49.Google Scholar
  80. 80.
    Ermakov, V.S., Peretrukhin, V.F., and Krot, N.N., Radiokhimiya, 1977, vol. 19, no. 3, p.253.Google Scholar
  81. 81.
    Tananaev, I.G., Radiokhimiya, 1989, vol. 31, no. 3, p.46.Google Scholar
  82. 82.
    The Actinide Elements, Seaborg, G.T. and Katz, J.J., Eds., New York, 1954. Translated under the title Aktinidy, Moscow: Inostrannaya Literatura, 1955, p.273.Google Scholar
  83. 83.
    Shiloh, M., Givon, M., and Marcus, Y., J. Inorg. Nucl. Chem., 1969, vol. 31, p. 1807.CrossRefGoogle Scholar
  84. 84.
    Keller, C. and Fang, D., Radiochim. Acta, 1969, vol. 11, p.123.CrossRefGoogle Scholar
  85. 85.
    Moskvin, A.I., Koordinatsionnaya khimiya aktinoidov (Coordination Chemistry of Actinides), Moscow: Atomizdat, 1975, p.288.Google Scholar
  86. 86.
    Alekseeva, N.A., Bulyanitsa, L.S., and Koval’-skaya, M.P., Radiokhimiya, 1974, vol. 16, no. 5, p.575.Google Scholar
  87. 87.
    Karalova, Z.K., Myasoedov, B.F., Bukina, T.B., and Rodionova, L.M., Radiokhimiya, 1985, vol. 27, no. 1, p.47.Google Scholar
  88. 88.
    Clifford, W.E., Bullwinkel, E.P., McClaine, L.A., and Noble, P., J. Am. Chem. Soc., 1958, vol. 80, p. 2959.CrossRefGoogle Scholar
  89. 89.
    Ueno, K. and Saito, A., Anal. Chim. Acta, 1971, vol. 56, p.427.CrossRefGoogle Scholar
  90. 90.
    Shevchuk, I.A., Konovalenko, L.I., Simonova, T.N., and Chervinskii, A.Yu., Zh. Neorg. Khim., 1981, vol. 25, p.440.Google Scholar
  91. 91.
    Karalova, Z.K., Bukina, T.I., and Devirts, E.A., Sovremennye metody razdeleniya i opredeleniya radioaktivnykh elementov (Modern Methods for Separation and Determination of Radioactive Elements), Myasoedov, B.F. and Shvetsov, I.K., Eds., Moscow: Nauka, 1989, p.312.Google Scholar
  92. 92.
    Nekrasova, V.V., Karalova, Z.K., and Myasoedov, B.F., Radiokhimiya, 1981, vol. 23, no. 2, p.259.Google Scholar
  93. 93.
    Karalova, Z.K., Devirts, E.A., and Myasoedov, B.F., Radiokhimiya, 1987, vol. 29, no. 1, p.33.Google Scholar
  94. 94.
    Karalova, Z.K., Myasoedov, B.F., Devirts, E.A., et al., Radiokhimiya, 1986, vol. 28, no. 1, p.47.Google Scholar
  95. 95.
    Okafer, E.C., Spectrochim. Acta, Part A, 1982, vol. 38, p.381.Google Scholar
  96. 96.
    Karalova, Z.K., Lavrinovich, E.A., Trofimov, T.I., et al., Radiokhimiya, 1989, vol. 31, no. 6, p.76.Google Scholar
  97. 97.
    Karalova, Z.K., Bukina, T.I., Lavrinovich, E.A., et al., Radiokhimiya, 1988, vol. 30, no. 2, p.203.Google Scholar
  98. 98.
    Bukina, T.I., Karalova, Z.K., and Myasoedov, B.F., Radiokhimiya, 1992, vol. 34, no. 6, p.32.Google Scholar
  99. 99.
    Karalova, Z.K., Myasoedov, B.F., Rodionova, L.M., and Kuznetsova, V.S., Radiokhimiya, 1983, vol. 25, no. 2, p.187.Google Scholar
  100. 100.
    Karalova, Z.K., Bukina, T.I., Myasoedov, B.F., et al., Radiokhimiya, 1987, vol. 29, no. 3, p.335.Google Scholar
  101. 101.
    Novikov, A.P., Bukina, T.I., Karalova, Z.K., and Myasoedov, B.F., Radiokhimiya, 1987, vol. 29, no. 2, p.184.Google Scholar
  102. 102.
    Myasoedov, B.F., Karalova, Z.K., Kuznetsova, V.S., and Rodionova, L.M., Radiokhimiya, 1980, vol. 22, no. 3, p.347.Google Scholar
  103. 103.
    Karalova, Z.K. and Myasoedov, B.F., Zh. Anal. Khim., 1984, vol. 39, no. 1, p.119.Google Scholar
  104. 104.
    Karalova, Z.K., Bukina, T.I., Devirts, E.A., et al., Radiokhimiya, 1987, vol. 29, no. 6, p.767.Google Scholar
  105. 105.
    Karalova, Z.K., Bukina, T.I., Lavrinovich, E.A., and Myasoedov, B.F., Radiokhimiya, 1989, vol. 31, no. 6, p.81.Google Scholar
  106. 106.
    Bukina, T.I., Karalova, Z.K., and Myasoedov, B.F., Radiokhimiya, 1990, vol. 32, no. 2, p.11.Google Scholar
  107. 107.
    Karalova, Z.K., Lavrinovich, E.A., and Myasoedov, B.F., J. Radioanal. Nucl. Chem., 1992, vol. 159, p.259.CrossRefGoogle Scholar
  108. 108.
    Karalova, Z.K., Lavrinovich, E.A., Ivanova, S.A., and Myasoedov, B.F., Radiokhimiya, 1990, vol. 32, no. 5, p.81.Google Scholar
  109. 109.
    Karalova, Z.K., Lavrinovich, E.A., and Myasoedov, B.F., Radiokhimiya, 1990, vol. 32, no. 2, p.16.Google Scholar
  110. 110.
    Smirnov, I., Babain, V., Efremova, T., and Kalchenko, V., J. Nucl. Sci. Technol., 2002, no. 3, p.321.CrossRefGoogle Scholar
  111. 111.
    Klimchuk, O., Atamas, L., Miroshnichenko, S., et al., J. Inclus. Phenom. Macrocycl. Chem., 2004, vol. 49, p.47.CrossRefGoogle Scholar
  112. 112.
    Smirnov, I., Karavan, M., Babain, V., et al., Radiochim. Acta, 2007, vol. 95, p.97.CrossRefGoogle Scholar
  113. 113.
    Arnaud-Neu, F., Karavan, M., Hubscher-Bruder, V., et al., J. Inclus. Phenom. Macrocycl. Chem., 2010, vol. 66, p.113.CrossRefGoogle Scholar
  114. 114.
    Kharchenko, S., Drapailo, A., Shishkina, S., et al., Supramol. Chem., 2014, vol. 26, p.864.CrossRefGoogle Scholar
  115. 115.
    Smirnov, I.V., Shadrin, A.Yu., Babain, V.A., and Logunov, M.V., ACS Symp. Ser., 2009, vol. 757, no. 8, p.107.Google Scholar
  116. 116.
    Smirnov, I.V., Stepanova, E.S., Drapailo, A.B., and Kalchenko, A.I., Radiochemistry, 2016, vol. 58, no. 1, pp. 42–51.CrossRefGoogle Scholar
  117. 117.
    Patent US 4 477 377, 1984.Google Scholar
  118. 118.
    Smirnov, I.V., Stepanova, E.S., Tyupina, M.Yu., et al., Radiochemistry, 2016, vol. 58, no. 4, pp. 381–388.CrossRefGoogle Scholar
  119. 119.
    Smirnov, I., Stepanova, E., Tyupina, M., et al., Macroheterocycles, 2017, vol. 10, no. 2, p.196.CrossRefGoogle Scholar
  120. 120.
    Smirnov, I.V., Ivenskaya, N.M., and Stepanova, E.S., Proc. Int. Nuclear Fuel Cycle Conf. GLOBAL 2017, Seoul, 2017, pp. 534–538.Google Scholar
  121. 121.
    Smirnov, I.V. and Stepanova, E.S., Procedia Chem., 2016, vol. 21, p.203.CrossRefGoogle Scholar
  122. 122.
    Smirnov, I.V., Karavan, M.D., Stepanova, E.S., and Kalchenko, V.I., Radiochemistry, 2016, vol. 58, no. 6, pp. 617–624.CrossRefGoogle Scholar
  123. 123.
    Kuzovkina, E.V., Lavrinovich, E.A., and Novikov, A.P., J. Radioanal. Nucl. Chem., 2017, vol. 311, p. 1983.CrossRefGoogle Scholar
  124. 124.
    Smirnov, I.V., Stepanova, E.S., Tyupina, M.Yu., et al., Radiochemistry, 2017, vol. 59, no. 4, pp. 365–371.CrossRefGoogle Scholar
  125. 125.
    Kumar, A., Sonawane, J.V., Rathore, N.S., et al., J. Radioanal. Nucl. Chem., 2002, vol. 254, p.469.CrossRefGoogle Scholar
  126. 126.
    Chetty, K., Sagar, V., and Swarup, R., Radiochim. Acta, 2001, vol. 89, p.91.CrossRefGoogle Scholar
  127. 127.
    Molochnikova, N.P., Shkinev, V.M., and Myasoedov, B.F., Radiokhimiya, 1995, vol. 37, no. 5, p.385.Google Scholar
  128. 128.
    Molochnikova, N.P., Frenkel’, V.Ya., Myasoedov, B.F., et al., Radiokhimiya, 1987, vol. 29, no. 3, p.330.Google Scholar
  129. 129.
    Saleh, M.I., Salhin, A., and Saad, B., Analyst, 1995, vol. 120, p. 2861.CrossRefGoogle Scholar
  130. 130.
    Yakshin, V.V. and Karalova, Z.K., Sovremennye metody razdeleniya i opredeleniya radioaktivnykh elementov (Modern Methods for Separation and Determination of Radioactive Elements), Myasoedov, B.F. and Shvetsov, I.K., Eds., Moscow: Nauka, 1989, p.312.Google Scholar
  131. 131.
    Shilov, V.P., Krot, N.N., Kryutchkov, S.V., et al., Report WHC-EP-0886, 1996.Google Scholar
  132. 132.
    Libson, K., Sullivan, J.C., and Mulae, W.A., Inorg. Chem., 1989, vol. 28, p.375.CrossRefGoogle Scholar
  133. 133.
    Ben Said, K., Seimbille, Y., and Fattahi, M., Appl. Radiat. Isot., 2001, vol. 54, p.45.CrossRefPubMedGoogle Scholar
  134. 134.
    Zaitsev, A.A., Lebedev, I.A., and Pirozhkov, S.V., Radiokhimiya, 1964, vol. 6, p.440.Google Scholar
  135. 135.
    Ryabchikov, D.I. and Borisova, L.V., Zh. Anal. Khim., 1958, vol. 13, p.155.Google Scholar
  136. 136.
    Glagolenko, Yu.V., Dzekun, E.G., and Rovnyi, S.I., Vopr. Radiats. Bezopasn., 1997, no. 2, p.3.Google Scholar
  137. 137.
    Gephart, R.E. and Lundgren, R.E., Hanford Tank Clean up: A Guide to Understanding the Technical Issues: PNL-10773, Pacific Northwest Laboratory, 1995.CrossRefGoogle Scholar
  138. 138.
    Agnew, S.F., Hanford Defined Wastes: Chemical and Radionuclide Compositions: LAUR-94-2657 Rev. 2, Los Alamos National Laboratory, 1995.Google Scholar
  139. 139.
    Long-Lived Legacy: Managing High-Level and Transuranic Waste at the DOE Nuclear Weapons Complex: IOTA-BP-O-83, Office of Technology Assessment, 1991.Google Scholar
  140. 140.
    Yassan, N.M., King, W.D., McCabe, D.J., et al., Solvent Extr. Ion Exch., 2002, vol. 20, p.211.CrossRefGoogle Scholar
  141. 141.
    Rogers, D.R., Solvent Extr. Ion Exch., 1997, vol. 15, p.547.CrossRefGoogle Scholar
  142. 142.
    Silin, V.I. and Kareta, A.V., J. Alloys Compd., 1998, vols. 271–273, p.803.CrossRefGoogle Scholar
  143. 143.
    Antipin, I.S., Solovieva, S.E., Stoikov, I.I., et al., Russ. Chem. Bull., 2004, vol. 53, no. 1, pp. 127–132.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. V. Smirnov
    • 1
    • 2
    • 3
    Email author
  • M. D. Karavan
    • 1
    • 2
    • 3
  • M. V. Logunov
    • 2
  • I. G. Tananaev
    • 2
    • 4
    • 5
  • B. F. Myasoedov
    • 5
  1. 1.Khlopin Radium InstituteSt. PetersburgRussia
  2. 2.Ozersk Institute of Technology, Moscow Engineering Physics InstituteNational Research Nuclear UniversityOzersk, Chelyabinsk oblastRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Far Eastern Federal UniversityVladivostokRussia
  5. 5.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations