Advertisement

Radiochemistry

, Volume 60, Issue 5, pp 451–469 | Cite as

Physicochemical Properties of Bivalent f Elements in the Gas Phase, Solid Matrices, Melts, and Solutions

  • S. A. KulyukhinEmail author
Article
  • 19 Downloads

Abstract

The review deals with the papers published since 2004 on the chemistry of macro- and microamounts of Ln and An in oxidation state 2+ in melts, solid matrices, solutions, and gas phase. Studies on complexation of bivalent f elements are analyzed.

Keywords

lanthanides(II) actinides(II) physicochemical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikheev, N.B., Kulyukhin, S.A., Kamenskaya, A.N., et al., Radiochemistry, 2004, vol. 46, no. 4, pp. 324–339.CrossRefGoogle Scholar
  2. 2.
    Mikheev, N.B., Kulyukhin, S.A., Kamenskaya, A.N., et al., Radiochemistry, 2004, vol. 46, no. 6, pp. 521–535.CrossRefGoogle Scholar
  3. 3.
    Mikheev, N.B., Kulyukhin, S.A., Kamenskaya, A.N., et al., Radiochemistry, 2005, vol. 47, no. 5, pp. 423–439.CrossRefGoogle Scholar
  4. 4.
    Chervonnyi, A.D. and Chervonnaya, N.A., Russ. J. Inorg. Chem., 2007, vol. 52, no. 8, pp. 1230–1242.CrossRefGoogle Scholar
  5. 5.
    Chervonnyi, A.D. and Chervonnaya, N.A., Russ. J. Inorg. Chem., 2007, vol. 52, no. 10, pp. 1570–1576.CrossRefGoogle Scholar
  6. 6.
    Chervonnyi, A.D. and Chervonnaya, N.A., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 2, pp. 184–192.Google Scholar
  7. 7.
    Chervonnyi, A.D. and Chervonnaya, N.A., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 1, pp. 26–40.CrossRefGoogle Scholar
  8. 8.
    Chervonnyi, A.D. and Chervonnaya, N.A., Russ. J. Inorg. Chem., 2005, vol. 50, no. 2, pp. 225–232.Google Scholar
  9. 9.
    Marcalo, J. and Gibson, J.K., J. Phys. Chem. A, 2009, vol. 113, no. 45, pp. 12599–12606.CrossRefPubMedGoogle Scholar
  10. 10.
    Binary Rare Earth Oxides, Adachi, G., Imanaka, N., and Kang, Z.C., Eds., Dordrecht: Kluwer Acad., 2004.Google Scholar
  11. 11.
    Simon, A., Angew. Chem., Int. Ed., 2012, vol. 51, no. 18, pp. 4280–4286.CrossRefGoogle Scholar
  12. 12.
    Ivanenko, A.P., Kompanichenko, N.M., Omelchuk, A.A., et al., Russ. J. Inorg. Chem., 2010, vol. 55, no. 6, pp. 841–847.CrossRefGoogle Scholar
  13. 13.
    Zinchenko, V.F., Eryomin, O.G., Efryushina, N.P., et al., Russ. J. Inorg. Chem., 2005, vol. 50, no. 5, pp. 676–680.Google Scholar
  14. 14.
    Reshetnikov, F.G., At. Energ., 2007, vol. 103, no. 5, pp. 911–913.CrossRefGoogle Scholar
  15. 15.
    Polinski, M.J., Cross, J.N., Villa, E.M., et al., Inorg. Chem., 2013, vol. 52, no. 14, pp. 8099–8105.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamnova, N.A., Egorov-Tismenko, Yu.K., Zubkova, N.V., et al., Crystallogr. Rep., 2005, vol. 50, no. 5, pp. 766–772.CrossRefGoogle Scholar
  17. 17.
    Brovkin, A.A., Zaikina, N.V., and Brovkina, V.S., Kristallografiya, 1975, no. 5, pp. 563–566.Google Scholar
  18. 18.
    Fagin, A.A., Salmova, S.V., and Bochkarev, M.N., Russ. Chem. Bull., 2009, vol. 58, no. 1, pp. 230–233.CrossRefGoogle Scholar
  19. 19.
    Muller, T.G., Mogk, J., Conrad, M., and Kraus, F., Eur. J. Inorg. Chem., 2016, vol. 2016, no. 26, pp. 4162–4169.CrossRefGoogle Scholar
  20. 20.
    Jacobs, H. and Fink, U., Z. Anorg. Allg. Chem., 1978, vol. 438, no. 1, pp. 151–159.CrossRefGoogle Scholar
  21. 21.
    Kieffer, R., Ettmayer, P., and Pajakoff, Sw., Monatsh. Chem., 1972, vol. 103, no. 5, pp. 1285–1298.CrossRefGoogle Scholar
  22. 22.
    Imamura, H., Sakata, Y., Nuruyu, T., and Imahashi, T., J. Alloys Compd., 2006, vol. 418, nos. 1–2, pp. 251–254.CrossRefGoogle Scholar
  23. 23.
    Baisch, U., Pagano, S., Zeuner, M., et al., Chem. Eur. J., 2006, vol. 12, no. 18, pp. 4785–4798.CrossRefPubMedGoogle Scholar
  24. 24.
    Hadenfeldt, C., Jacobs, H., and Juza, R., Z. Anorg. Allg. Chem., 1970, vol. 379, no. 2, pp. 144–156.CrossRefGoogle Scholar
  25. 25.
    Wayda, A.L., Dye, J.L., and Rogers, R.D., Organometallics, 1984, vol. 3, no. 11, pp. 1605–1610.CrossRefGoogle Scholar
  26. 26.
    Zalkin, A., Henly, T.J., and Andersen, R.A., Acta Crystallogr., Sect. C, 1987, vol. 43, no. 2, pp. 233–236.CrossRefGoogle Scholar
  27. 27.
    Kiselev, Yu.M., Russ. J. Inorg. Chem., 2009, vol. 54, no. 3, pp. 425–435.CrossRefGoogle Scholar
  28. 28.
    Nogami, M., Kawamura, G., Park, G.J., et al., J. Lumin., 2005, vol. 114, nos. 3–4, pp. 178–186.CrossRefGoogle Scholar
  29. 29.
    You, H., Hayakawa, T., and Nogami, M., J. Non-Cryst. Solids, 2006, vol. 352, nos. 26–27, pp. 2778–2782.CrossRefGoogle Scholar
  30. 30.
    MacKeen, C., Bridges, F., Seijo, L., et al., J. Phys. Chem. C, 2017, vol. 121, no. 51, pp. 28435–28442.CrossRefGoogle Scholar
  31. 31.
    MacKeen, C., Bridges, F., Kozina, M., et al., J. Phys. Chem. Lett., 2017, vol. 8, no. 14, pp. 3313–3316.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang, J. and Riesen, H., J. Phys. Chem. A, 2017, vol. 121, no. 4, pp. 803–809.CrossRefPubMedGoogle Scholar
  33. 33.
    Novoselova, A.V. and Smolenskiii, V.V., Russ. J. Electrochem., 2013, vol. 49, no. 10, pp. 931–937.CrossRefGoogle Scholar
  34. 34.
    Novoselova, A.V. and Smolenskiii, V.V., Radiochemistry, 2013, vol. 55, no. 3, pp. 243–256.CrossRefGoogle Scholar
  35. 35.
    Novoselova, A.V. and Smolenskii, V.V., Electrochim. Acta, 2013, vol. 87, pp. 657–662.CrossRefGoogle Scholar
  36. 36.
    Novoselova, A.V. and Smolenskii, V.V., J. Chem. Thermodyn., 2012, vol. 48, pp. 140–144.CrossRefGoogle Scholar
  37. 37.
    Smolenskii, V.V. and Novoselova, A.V., Electrochim. Acta, 2012, vol. 63, pp. 179–184.CrossRefGoogle Scholar
  38. 38.
    Novoselova, A.V. and Smolenskii, V.V., Russ. J. Appl. Chem., 2012, vol. 85, no. 2, pp. 218–224.CrossRefGoogle Scholar
  39. 39.
    Novoselova, A.V. and Smolenskii, V.V., J. Chem. Thermodyn., 2011, vol. 43, no. 7, pp. 1063–1067.CrossRefGoogle Scholar
  40. 40.
    Osipenko, A., Maershin, A., Smolenski, V., et al., J. Electroanal. Chem., 2011, vol. 651, no. 1, pp. 67–71.CrossRefGoogle Scholar
  41. 41.
    Novoselova, A.V. and Smolenskii, V.V., J. Chem. Thermodyn., 2010, vol. 42, no. 8, pp. 973–977.CrossRefGoogle Scholar
  42. 42.
    Novoselova, A.V. and Smolenskii, V.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 12, pp. 2133–2138.CrossRefGoogle Scholar
  43. 43.
    Smolenski, V., Novoselova, A., Osipenko, A., and Kormilitsyn, M., J. Electroanal. Chem., 2009, vol. 633, no. 2, pp. 291–296.CrossRefGoogle Scholar
  44. 44.
    Smolenski, V., Novoselova, A., Bovet, A., et al., J. Nucl. Mater., 2009, vol. 385, no. 1, pp. 184–185.CrossRefGoogle Scholar
  45. 45.
    Smolenski, V., Novoselova, A., Osipenko, A., et al., Electrochim. Acta, 2008, vol. 54, no. 2, pp. 382–387.CrossRefGoogle Scholar
  46. 46.
    Khokhlov, V.A., Novoselova, A.V., Nikolaeva, E.V., et al., Russ. J. Electrochem., 2007, vol. 43, no. 8, pp. 961–967.CrossRefGoogle Scholar
  47. 47.
    Smolenskii, V.V., Novoselova, A.V., and Bove, A.L., Russ. J. Appl. Chem., 2007, vol. 80, no. 10, pp. 1661–1666.CrossRefGoogle Scholar
  48. 48.
    Smolenskii, V.V., Novoselova, A.V., and Osipenko, A.G., Russ. J. Appl. Chem., 2008, vol. 81, no. 10, pp. 1768–1773.CrossRefGoogle Scholar
  49. 49.
    Novoselova, A.V. and Smolenskii, V.V., Russ. J. Appl. Chem., 2010, vol. 83, no. 11, pp. 1944–1947.CrossRefGoogle Scholar
  50. 50.
    Karbowiak, M., Rudowicz, C., and Cichos, J., Angew. Chem., Int. Ed., 2017, vol. 56, no. 36, pp. 10721–10724.CrossRefGoogle Scholar
  51. 51.
    Zhang, Y.-F. and Mellah, M., ACS Catal., 2017, vol. 7, no. 12, pp. 8480–8486.CrossRefGoogle Scholar
  52. 52.
    Sun, L., Sahloul, K., and Mellah, M., ACS Catal., 2013, vol. 3, no. 11, pp. 2568–2573.CrossRefGoogle Scholar
  53. 53.
    Ramírez-Solís, A., Amaro-Estrada, J.I., Hernádez-Cobos, J., and Maron, L., J. Phys. Chem. A, 2017, vol. 121, no. 11, pp. 2293–2297.CrossRefGoogle Scholar
  54. 54.
    Bulgakov, R.G., Kuleshov, S.P., Kinzyabaeva, Z.S., et al., Russ. Chem. Bull., 2007, vol. 56, no. 10, pp. 1956–1959.CrossRefGoogle Scholar
  55. 55.
    Yusov, A.B., Photochemical reactions and luminescence of actinide ions in aqueous solutions, Doctoral (Chem.) Dissertation, Moscow: Frumkin Inst. of Physical Chemistry and Electrochemistry, Russ. Acad. Sci., 2000.Google Scholar
  56. 56.
    Nishida, D., Yamade, E., Kusaba, M., et al., J. Phys. Chem. A, 2010, vol. 114, no. 18, pp. 5648–5654.CrossRefPubMedGoogle Scholar
  57. 57.
    Ekanger, L.A., Basal, L.A., and Allen, M.J., Chem. Eur. J., 2017, vol. 23, no. 5, pp. 1145–1150.CrossRefPubMedGoogle Scholar
  58. 58.
    Ekanger, L.A., Polin, L.A., Shen, Y., et al., Angew. Chem., 2015, vol. 127, no. 48, pp. 14606–14609.CrossRefGoogle Scholar
  59. 59.
    Ekanger, L.A., Polin, L.A., Shen, Y., et al., Contrast Media Mol. Imag., 2016, vol. 11, no. 4, pp. 299–303.CrossRefGoogle Scholar
  60. 60.
    Ekanger, L.A., Mills, D.R., Ali, M.M., et al., Inorg. Chem., 2016, vol. 55, no. 20, pp. 9981–9988.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gamage, N.-D.H., Mei, Y., Garcia, J., and Allen, M.J., Angew. Chem., 2010, vol. 122, no. 47, pp. 9107–9109.CrossRefGoogle Scholar
  62. 62.
    Regueiro-Figueroa, M., Barriada, J.L., Pallier, A., et al., Inorg. Chem., 2015, vol. 54, no. 10, pp. 4940–4952.CrossRefPubMedGoogle Scholar
  63. 63.
    Ferreirós-Martinez, R., Esteban-Gómez, D., Tóth, É., et al., Inorg. Chem., 2011, vol. 50, no. 8, pp. 3772–3784.CrossRefPubMedGoogle Scholar
  64. 64.
    Burnett, M.E., Adebesin, B., Funk, A.M., et al., Eur. J. Inorg. Chem., 2017, vol. 2017, no. 43, pp. 5001–5005.CrossRefPubMedGoogle Scholar
  65. 65.
    Lenora, Ch.U., Carniato, F., Shen, Y., et al., Chem. Eur. J., 2017, vol. 23, no. 61, pp. 15404–15414.CrossRefPubMedGoogle Scholar
  66. 66.
    Andrez, J., Bozoklu, G., Nocton, G., et al., Chem. Eur. J., 2015, vol. 21, no. 43, pp. 15188–15200.CrossRefPubMedGoogle Scholar
  67. 67.
    Bulgakov, R.G., Kuleshov, S.P., Makhmutov, A.R., and Kinzyabaeva, Z.S., Russ. Chem. Bull., 2007, vol. 56, no. 3, pp. 570–571.CrossRefGoogle Scholar
  68. 68.
    Trifonov, A.A., Fedorova, E.A., Fukin, G.K., et al., Russ. Chem. Bull., 2004, vol. 53, no. 12, pp. 2736–2743.CrossRefGoogle Scholar
  69. 69.
    Fedushkin, I.L., Yambulatov, D.S., Skatova, A.A., et al., Inorg. Chem., 2017, vol. 56, no. 16, pp. 9825–9833.CrossRefPubMedGoogle Scholar
  70. 70.
    Bochkarev, M.N., Khoroshen’kov, G.V., Burin, D.M., et al., Russ. Chem. Bull., 2006, vol. 55, no. 3, pp. 588–590.CrossRefGoogle Scholar
  71. 71.
    Balashova, T.V., Kuzyaev, D.M., Semchikov, Yu.D., and Bochkarev, M.N., Russ. Chem. Bull., 2005, vol. 54, no. 11, pp. 2506–2510.CrossRefGoogle Scholar
  72. 72.
    Kuzyaev, D.M., Fukin, G.K., Baranov, E.V., and Bochkarev, M.N., Russ. Chem. Bull., 2007, vol. 56, no. 10, pp. 1960–1963.CrossRefGoogle Scholar
  73. 73.
    Bochkarev, M.N. and Burin, M.E., Russ. Chem. Bull., 2004, vol. 53, no. 10, pp. 2179–2181.CrossRefGoogle Scholar
  74. 74.
    Selikhov, A.N., Mahrova, T.V., Cherkasov, A.V., et al., Chem. Eur. J., 2017, vol. 23, no. 6, pp. 1436–1443.CrossRefPubMedGoogle Scholar
  75. 75.
    Selikhov, A.N., Cherkasov, A.V., Fukin, G.K., et al., Organometallics, 2015, vol. 34, no. 3, pp. 555–562.CrossRefGoogle Scholar
  76. 76.
    Evans, W.J., Grate, J.W., Choi, H.W., et al., J. Am. Chem. Soc., 1985, vol. 107, no. 4, pp. 941–946.CrossRefGoogle Scholar
  77. 77.
    Barbier-Baudry, D., Heiner, S., Kubicki, M.M., et al., Organometallics, 2001, vol. 20, no. 20, pp. 4207–4210.CrossRefGoogle Scholar
  78. 78.
    Hitchcock, P.B., Lappert, M.F., Maron, L., and Protchenko, A.V., Angew. Chem., Int. Ed., 2008, vol. 47, no. 8, pp. 1488–1491.CrossRefGoogle Scholar
  79. 79.
    MacDonald, M.R., Ziller, J.W., and Evans, W.J., J. Am. Chem. Soc., 2011, vol. 133, no. 40, pp. 15914–15917.CrossRefPubMedGoogle Scholar
  80. 80.
    MacDonald, M.R., Bates, J.E., Fieser, M.E., et al., J. Am. Chem. Soc., 2012, vol. 134, no. 20, pp. 8420–8423.CrossRefPubMedGoogle Scholar
  81. 81.
    MacDonald, M.R., Bates, J.E., Ziller, J.W., et al., J. Am. Chem. Soc., 2013, vol. 135, no. 26, pp. 9857–9868.CrossRefPubMedGoogle Scholar
  82. 82.
    Windorff, C.J., MacDonald, M.R., Meihaus, K.R., et al., Chem. Eur. J., 2016, vol. 22, no. 2, pp. 772–782.CrossRefPubMedGoogle Scholar
  83. 83.
    Meyer, G., Angew. Chem., Int. Ed., 2014, vol. 53, no. 14, pp. 3550–3551.CrossRefGoogle Scholar
  84. 84.
    Fieser, M.E., MacDonald, M.R., Krull, B.T., et al., J. Am. Chem. Soc., 2015, vol. 137, no. 1, pp. 369–382.CrossRefPubMedGoogle Scholar
  85. 85.
    Meihaus, K.R., Fieser, M.E., Corbey, J.F., et al., J. Am. Chem. Soc., 2015, vol. 137, no. 31, pp. 9855–9860.CrossRefPubMedGoogle Scholar
  86. 86.
    Evans, W.J., Organometallics, 2016, vol. 35, no. 18, pp. 3088–3100.CrossRefGoogle Scholar
  87. 87.
    Langeslay, R.R., Fieser, M.E., Ziller, J.W., et al., Chem. Sci., 2015, vol. 6, no. 1, pp. 517–521.CrossRefPubMedGoogle Scholar
  88. 88.
    MacDonald, M.R., Fieser, M.E., Bates, J.E., et al., J. Am. Chem. Soc., 2013, vol. 135, no. 36, pp. 13310–13313.89.CrossRefPubMedGoogle Scholar
  89. 88a.
    Langeslay, R.R., Fieser, M.E., Ziller, J.W., et al., J. Am. Chem. Soc., 2016, vol. 138, no. 12, pp. 4036–4045.CrossRefPubMedGoogle Scholar
  90. 90.
    Dutkiewicz, M.S., Farnaby, J.H., Apostolidis, C., et al., Nat. Chem., 2016, vol. 8, no. 8, pp. 797–802.CrossRefPubMedGoogle Scholar
  91. 91.
    Gibson, J.K., Haire, R.G., Santos, M., et al., J. Phys. Chem. A, 2005, vol. 109, no. 12, pp. 2768–2781.CrossRefPubMedGoogle Scholar
  92. 92.
    Windorff, C.J., Chen, G.P., Cross, J.N., et al., J. Am. Chem. Soc., 2017, vol. 139, no. 11, pp. 3970–3973.CrossRefPubMedGoogle Scholar
  93. 93.
    Edelmann, A., Blaurock, S., Lorenz, V., et al., Angew. Chem., Int. Ed., 2007, vol. 46, no. 35, pp. 6732–6734.CrossRefGoogle Scholar
  94. 94.
    Kelly, R.P., Maron, L., Scopelliti, R., and Mazzanti, M., Angew. Chem., Int. Ed., 2017, vol. 56, no. 49, pp. 15663–15666.CrossRefGoogle Scholar
  95. 95.
    Goodwin, C.A.P., Chilton, N.F., Natrajan, L.S., et al., Inorg. Chem., 2017, vol. 56, no. 10, pp. 5959–5970.CrossRefPubMedGoogle Scholar
  96. 96.
    Goodwin, C.A.P., Chilton, N.F., Vettese, G.F., et al., Inorg. Chem., 2016, vol. 55, no. 20, pp. 10057–10067.CrossRefPubMedGoogle Scholar
  97. 97.
    Yao, S., Chan, H.-S., Lam, C.-K., and Lee, Y.K., Inorg. Chem., 2009, vol. 48, no. 20, pp. 9936–9946.CrossRefPubMedGoogle Scholar
  98. 98.
    Yan, L., Liu, H., Wang, J., et al., Inorg. Chem., 2012, vol. 51, no. 7, pp. 4151–4160.CrossRefPubMedGoogle Scholar
  99. 99.
    Daly, S.R. and Girolami, G.S., Inorg. Chem., 2010, vol. 49, no. 10, pp. 4578–4585.CrossRefPubMedGoogle Scholar
  100. 100.
    Zeimentz, P.M., Arndt, S., Elvidge, B.R., and Okuda, J., Chem. Rev., 2006, vol. 106, no. 6, pp. 2404–2433.CrossRefPubMedGoogle Scholar
  101. 101.
    Cole, M.L., Deacon, G.B., Forsyth, C.M., et al., Chem. Eur. J., 2013, vol. 19, no. 4, pp. 1410–1420.CrossRefPubMedGoogle Scholar
  102. 102.
    Ali, S.H., Deacon, G.B., Junk, P.C., et al., Chem. Eur. J., 2018, vol. 24, no. 1, pp. 230–242.CrossRefPubMedGoogle Scholar
  103. 103.
    Xemard, M., Jaoul, A., Cordier, M., et al., Angew. Chem., Int. Ed., 2017, vol. 56, no. 15, pp. 4266–4271.CrossRefGoogle Scholar
  104. 104.
    Deacon, G.B., Guo, Z., Junk, P.C., and Wang, J., Angew. Chem., Int. Ed., 2017, vol. 56, no. 29, pp. 8486–8489.CrossRefGoogle Scholar
  105. 105.
    Binnemans, K., Chem. Rev., 2007, vol. 107, no. 6, pp. 2592–2614.CrossRefPubMedGoogle Scholar
  106. 106.
    Mudring, A.V., Babai, A., Arenz, S., and Giernoth, R., Angew. Chem., Int. Ed., 2005, vol. 44, no. 34, pp. 5485–5488.CrossRefGoogle Scholar
  107. 107.
    Bhatt, A.I., May, I., Volkovich, V.A., et al., Inorg. Chem., 2005, vol. 44, no. 14, pp. 4934–4940.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations