Advertisement

Radiochemistry

, Volume 60, Issue 4, pp 434–439 | Cite as

Aluminum (Iron) Phosphate Glasses Containing Rare Earth and Transuranium Elements: Phase Composition, Oxidation State of Np and Pu, and Hydrolytic Durability

  • S. S. DanilovEmail author
  • S. V. Stefanovsky
  • O. I. Stefanovskaya
  • S. E. Vinokurov
  • B. F. Myasoedov
  • Yu. A. Teterin
Article
  • 25 Downloads

Abstract

Samples of aluminum (iron) phosphate glasses containing weighable amounts of rare earth and transuranium elements were synthesized. The quenched glasses obtained are X-ray amorphous, and in the course of annealing they undergo partial crystallization with segregation of a poorly soluble phase of monazite structure. However, the hydrolytic durability of the glasses remains on the level meeting the requirements to immobilized high-level waste (no more than 10–7 g cm–2 day–1). Plutonium in the surface layer of the glass samples occurs in oxidation state IV, and neptunium, mainly in oxidation states IV and V.

Keywords

aluminum (iron) phosphate glasses high-level waste immobilization rare earth elements transuranium elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Waste), Vashman, A.A. and Polyakov, A.S., Eds., Moscow: TsNIIatominform, 1997.Google Scholar
  2. 2.
    Remizov, M.B., Kozlov, P.V., Logunov, M.V., et al., Vopr. Radiats. Bezopasn., 2014, no. 3, pp. 17–25.Google Scholar
  3. 3.
    Stefanovsky, S.V., Stefanovskaya, O.I., Vinokurov, S.E., et al., Radiochemistry, 2015, vol. 57, no. 4, pp. 348–355.CrossRefGoogle Scholar
  4. 4.
    Stefanovsky, S.V., Remizov, M.B., Belanova, E.A., et al., Glass Phys. Chem., 2015, vol. 41, no. 5, pp. 489–499.CrossRefGoogle Scholar
  5. 5.
    Stefanovsky, S.V., Stefanovsky, O.I., and Kadyko, M.I., J. Non-Cryst. Solids, 2016, vol. 443, pp. 192–198.CrossRefGoogle Scholar
  6. 6.
    Stefanovsky, S.V., Stefanovskaya, O.I., Murzin, V.Yu., et al., Dokl. Phys. Chem., 2016, vol. 468, part 1, pp. 76–79.CrossRefGoogle Scholar
  7. 7.
    Chemical Durability and Related Properties of Solidified High-Level Waste Forms, Tech. Rep. Ser., Vienna: IAEA, 1985, no. 257.Google Scholar
  8. 8.
    Dzekun, E.G., Borisov, G.B., Polyakov, A.S., et al., At. Energ., 1994, vol. 76, pp. 183–188.Google Scholar
  9. 9.
    Stefanovsky, S.V., Stefanovskaya, O.I., Kadyko, M.I., et al., Vopr. Radiats. Bezopasn., 2015, no. 3, pp. 56–66.Google Scholar
  10. 10.
    Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), ASTM Standard C 1285-94, Philadelphia: ASTM, 1994.Google Scholar
  11. 11.
    Nuclear Waste Materials Handbook (Test Methods), Report DOE/TIC-11 400, Washington, DC: DOE Technical Information Center, 1981.Google Scholar
  12. 12.
    GOST (State Standard) R 52126–2003: Radioactive Waste. Determination of the Chemical Durability of Solidified High-Level Waste by Long-Term Leaching, Moscow: Gosstandart Rossii, 2003.Google Scholar
  13. 13.
    Naumkin, A., Kraut-Vass, A., Gaarenstroom, S., and Powell, C., NIST X-ray Photoelectron Spectroscopy Database, US Secretary of Commerce, 2012, https://doi.org/srdata.nist.gov/xps/Default.aspx.Google Scholar
  14. 14.
    Karim, D.P., Lam, D.J., Diamond, H., et al., Mater. Res. Soc. Symp. Proc., 1981, vol. 6, p. 67.CrossRefGoogle Scholar
  15. 15.
    Karim, D.P., Lam, D.J., Diamond, H., et al., in Scientific Basis for Nuclear Waste Management IV, 1982, vol. 4, p. 67.Google Scholar
  16. 16.
    Teterin, Yu.A. and Teterin, A.Yu., Russ. Chem. Rev., 2004, vol. 73, no. 6, pp. 541–580.CrossRefGoogle Scholar
  17. 17.
    Document NP-019-15: Collection, Processing, Storage, and Conditioning of Liquid Radioactive Waste. Safety Requirements.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. S. Danilov
    • 1
    Email author
  • S. V. Stefanovsky
    • 2
  • O. I. Stefanovskaya
    • 2
  • S. E. Vinokurov
    • 1
  • B. F. Myasoedov
    • 1
    • 2
  • Yu. A. Teterin
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.National Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations