Advertisement

Radiochemistry

, Volume 60, Issue 1, pp 79–91 | Cite as

Nuclear Chemical Effects in the Paragenetic Mineral Association Based on Polycrase

  • M. Hosseinpour Khanmiri
  • R. V. BogdanovEmail author
Article
  • 11 Downloads

Abstract

A natural polymineral compound in which the major uranium-containing mineral is polycrase (Ti- Ta-niobate) described by the formula АВ2О6 was chosen as a model for studying the behavior of recoil atoms produced by α-decay of actinides. Polycrase, despite its metamict structure, is characterized by the following features distinguishing it from Ti-Ta-niobates of the formula А2В2О7 (pyrochlore and betafite): (1) 1/3 of uranium atoms preserve the initial valence state, U(IV); (2) the U(IV) fraction is characterized by the isotope activity ratio AR(234U/238U) close to that at secular equilibrium; (3) the uranium atoms that underwent oxidation “memorize” their radiogenic origin; as a result, the AR(234U/238U) ratio in the U(VI) fraction is 0.90, and in the most altered part of the mineral it decreases to 0.77; (4) the parent uranium is relatively stable in the metamict structure of polycrase: The half-leaching time for 238U atoms is 2 times longer than that in betafite, zircon, or sphene.

Keywords

metamict minerals titano-tantalo-niobates uranium and thorium isotopes chemical effects of α-decay mineral-like HLW matrices actinide immobilization incongruent dissolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GOST (State Standard) R 50926–96: Solidified High-Level Waste. General Technical Requirements, Moscow: Izd. Standartov, 1996.Google Scholar
  2. 2.
    Chemical durability and related properties of solidified high-level waste forms, Tech. Rep. Ser., Vienna: IAEA, 1985, no. 257.Google Scholar
  3. 3.
    ASTM C 1220-98: Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste, ASTM, 1998.Google Scholar
  4. 4.
    GOST (State Standard) R 52126–2003: Radioactive Waste. Determination of the Chemical Durability of Solidified High-Level Waste by Prolonged Leaching, Moscow: Izd. Standartov, 2003.Google Scholar
  5. 5.
    Hart, K.P., Vance, E.R., Stanojevic, R., and Day, R.A., Mater. Res. Soc. Symp. Proc., 1999, vol. 556, pp. 173–180.CrossRefGoogle Scholar
  6. 6.
    Pierce, E.M., McGrail, B.P., Martin, P.F., et al., Appl. Geochem., 2007, vol. 22, no. 9, pp. 1841–1859.CrossRefGoogle Scholar
  7. 7.
    Jantzen, C.M., Kaplan, D.I., Bibler, N.E., et al., J. Nucl. Mater., 2008, vol. 378, no. 3, pp. 244–256.CrossRefGoogle Scholar
  8. 8.
    Ewing, R.C., Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste: NUREG/CP-0147, Kovach, L.A. and Murphy, W.M., Eds., 1995, p. 29.Google Scholar
  9. 9.
    Lumpkin, G.R., J. Nucl. Mater., 2001, vol. 289, nos. 1–2, pp. 136–166.CrossRefGoogle Scholar
  10. 10.
    Lumpkin, G.R., in Comprehensive Nuclear Materials, vol. 5: Material Performance and Corrosion/Waste Materials, 2012, pp. 563–600.CrossRefGoogle Scholar
  11. 11.
    Eyal, Y. and Olander, D.R., Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1867–1877.CrossRefGoogle Scholar
  12. 12.
    Olander, D.R. and Eyal, Y., Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1879–1887.CrossRefGoogle Scholar
  13. 13.
    Olander, D.R. and Eyal, Y., Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1889–1896.CrossRefGoogle Scholar
  14. 14.
    Burakov, B.E., Ojovan, M.I., and Lee, W.E., Crystalline Materials for Actinide Immobilisation, London: Imperial College, 2011.CrossRefGoogle Scholar
  15. 15.
    Andersen, M.B., Erel, Y., and Bourdon, B., Geochim. Cosmochim. Acta, 2009, vol. 73, no. 14, pp. 4124–4141.CrossRefGoogle Scholar
  16. 16.
    Bogdanov, R.V., Puchkova, E.V., Parnikov, N.G., and Sergeev, A.S., Radiochemistry, 2011, vol. 53, no. 6, pp. 651–661.CrossRefGoogle Scholar
  17. 17.
    Bogdanov, R.V., Batrakov, Y.F., Puchkova, E.V., et al., Mater. Res. Soc. Symp. Proc., 2002, vol. 713, pp. 295–301.CrossRefGoogle Scholar
  18. 18.
    Deditius, A.P., (Skomurski) Smith, F.N., Utsunomiya, S., and Ewing, R.C., Geochim. Cosmochim. Acta, 2015, vol. 150, pp. 226–252.CrossRefGoogle Scholar
  19. 19.
    Müller, H., in Proc. Conf. on the Treatment and Containment of Radioactive Waste and Its Disposal in Arid Environments (Radwaste R.S.A. 86), Cape Town (South Africa), Sept. 7–12, 1986, pp. 607–614.Google Scholar
  20. 20.
    Fleischer, M., Glossary of Mineral Species, Mineralogical Record, 1983, 5th ed.Google Scholar
  21. 21.
    The Encyclopedia of Mineralogy, Frye, K., Ed., Boston: Springer, 1981.Google Scholar
  22. 22.
    Greegor, R.B., Lytle, F.W., Ewing, R.C., and Harker, R.F., Nucl. Instrum. Meth. Phys. Res. B, 1984, vol. 1, pp. 587–594.CrossRefGoogle Scholar
  23. 23.
    Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., et al., Mater. Res. Soc. Symp. Proc., 1989, vol. 127, pp. 261–268.CrossRefGoogle Scholar
  24. 24.
    Nakai, I., Akimoto, J., Imafuku, M., et al., Phys. Chem. Miner., 1987, vol. 15, pp. 113–124.CrossRefGoogle Scholar
  25. 25.
    Lumpkin, G.R., Ewing, R.C., and Foltyn, E.M., J. Nucl. Mater., 1986, vol. 139, no. 2, pp. 113–120.CrossRefGoogle Scholar
  26. 26.
    Bogdanov, R.V., Skriplev, M.I., Petrunin, A.A., and Titov, A.V., J. Nucl. Mater., 2013, vol. 440, nos. 1–3, pp. 440–444.CrossRefGoogle Scholar
  27. 27.
    Skriplev, M.I., Bogdanov, R.V., and Schwink, L.R., Appl. Radiat. Isot., 2017, vol. 119, pp. 1–5.CrossRefGoogle Scholar
  28. 28.
    Bogdanov, R.V. and Khrisanfov, Yu.V., Certificate on State Registration of Computer Program no. 2 017 611 127, Jan. 19, 2017.Google Scholar
  29. 29.
    Cao, Q., Isakov, A.I., Liu, X., et al., Mater. Res. Soc. Symp. Proc., 2014, vol. 1665, pp. 313–318.Google Scholar
  30. 30.
    Cao, Q., Krivovichev, S.V., Burakov, B.E., and Liu, X., J. Radioanal. Nucl. Chem., 2015, vol. 304, pp. 251–255.CrossRefGoogle Scholar
  31. 31.
    Soboleva, M.V. and Pudovkina, I.A., Mineraly urana: Spravochnik (Uranium Minerals: Handbook), Moscow, 1957.Google Scholar
  32. 32.
    Bulakh, A.G., Zolotarev, A.A., and Krivovichev, V.G., Struktura, izomorfizm, formuly, klassifikatsiya mineralov (Structure, Isomorphism, Formulas, and Classification of Minerals), St. Petersburg: Sankt-Peterb. Gos. Univ., 2014.Google Scholar
  33. 33.
    Lumpkin, G.R. and Ewing, R.C., Am. Mineral., 1996, vol. 81, pp. 1237–1248.CrossRefGoogle Scholar
  34. 34.
    Chalov, P.I., Izotopnoe fraktsionirovanie prirodnogo urana (Isotope Fractionation of Natural Uranium), Frunze: Ilim, 1975.Google Scholar
  35. 35.
    Bogdanov, R.V., Batrakov, Yu.F., Puchkova, E.V., and Sergeev, A.S., Radiochemistry, 1999, vol. 41, no. 5, pp. 395–419.Google Scholar
  36. 36.
    Puchkova, E.V., Bogdanov, R.V., and Gieré, R., Am. Mineral., 2016, vol. 101, pp. 1884–1891.CrossRefGoogle Scholar
  37. 37.
    Goronovskii, I.T., Nazarenko, Yu.P., and Nekryach, E.F., Kratkii spravochnik po khimii (Concise Handbook of Chemistry), Kiev: Naukova Dumka, 1987.Google Scholar
  38. 38.
    Fluegge, S. and Zimens, K.E., Z. Phys. Chem., 1939, vol. 2, p. 181.Google Scholar
  39. 39.
    Hashimoto, T., Aoyagi, Y., Kudo, H., and Sotobayashi, T., J. Radioanal. Nucl. Chem., 1985, vol. 90, no. 2, pp. 415–438.CrossRefGoogle Scholar
  40. 40.
    Cherdyntsev, V.V., Uran-234 (Uranium-234), Moscow: Atomizdat, 1969.Google Scholar
  41. 41.
    Shirvington, P.J., Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 403–412.CrossRefGoogle Scholar
  42. 42.
    Sheng, Z.Z. and Kuroda, P.K., Radiochim. Acta, 1986, vol. 39, pp. 131–138.CrossRefGoogle Scholar
  43. 43.
    Sheng, Z.Z. and Kuroda, P.K., Radiochim. Acta, 1986, vol. 40, pp. 95–102.CrossRefGoogle Scholar
  44. 44.
    Suksi, J. and Rasilainen, K., Radiochim. Acta, 1996, vol. 74, pp. 297–302.CrossRefGoogle Scholar
  45. 45.
    Fleischer, R.L., Nucl. Tracks, 1982, vol. 6, pp. 35–42.Google Scholar
  46. 46.
    Latham, A.G. and Schwarcz, H.P., Appl. Geochem., 1987, vol. 2, no. 1, pp. 55–65.CrossRefGoogle Scholar
  47. 47.
    Latham, A.G. and Schwarcz, H.P., Appl. Geochem., 1987, vol. 2, no. 1, pp. 67–71.CrossRefGoogle Scholar
  48. 48.
    Bogdanov, R.V., Batrakov, Yu.F., Puchkova, E.V., and Sergeev, A.S., Geochem. Int., 2002, vol. 40, no. 11, pp. 1167–1177.Google Scholar
  49. 49.
    Eyal, Y. and Fleischer, R.L., Nature, 1985, vol. 314, pp. 518–520.CrossRefGoogle Scholar
  50. 50.
    Eyal, Y. and Fleischer, R.L., Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1155–1164.CrossRefGoogle Scholar
  51. 51.
    Eyal, Y., Lumpkin, G.R., and Ewing, R.C., Mater. Res. Soc. Symp. Proc., 1985, vol. 50, p. 379.CrossRefGoogle Scholar
  52. 52.
    Hosseinpour Khanmiri, M., Yanson, S.Yu., Fomin, E.V., et al., Phys. Chem. Miner. (in press).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations