Radiochemistry

, Volume 58, Issue 6, pp 571–577 | Cite as

Synthesis and crystal-chemical features of two new uranyl chromates with the structures derived from [(UO2)(T6+O4)(H2O) n ]0 (T = Cr6+, S6+, Se6+, n = 0–2)

Article

Abstract

Two new chromates of hexavalent uranium, [C3H10N][(UO2)(CrO4)(NO3)] (1) and [C2H8N]2[(UO2)2· (CrO4)2(Cr2O7)](H2O)2 (2), were prepared by a combination of hydrothermal synthesis and isothermal evaporation. Compounds 1 and 2 crystallize in the triclinic system, space group \(P\overline 1 \); a = 7.245(3), b = 7.329(3), c = 11.359(4) Å; α = 85.549(6)°, β = 82.547(6)°, γ = 80.174(6)° for 1; a = 7.2063(4), b = 11.5107(7), c = 16.0980(11) Å; α = 70.736(4)°, β = 80.246(4)°, γ = 71.759(4)° for 2. The structures were solved by the direct methods and refined to R 1 = 0.064 [for 1495 reflections with Fo > 4σ(Fo)] and 0.047 [for 4529 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)(CrO4)(NO3)] chains between which the isopropylamine molecules are arranged. In the structure of 2, the amine and H2O molecules are localized between the [(UO2)2(CrO4)2(Cr2O7)]2– layers. The uranyl chromate complexes described are derived from [(UO2)(TO4)(H2O) n ]0 chains (T = Cr6+, S6+, Se6+, n = 0–2). A brief review of uranyl compounds with tetrahedral TO 4 2– anions (T = Cr6+, S6+, Se6+) and similar structural organization is given.

Keywords

uranyl chromates synthesis crystal structure X-ray diffraction analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herbst, R.S., Law, J.D., Todd, T.A., et al., Sep. Sci. Technol., 2003, vol. 38, pp. 2685–2692.CrossRefGoogle Scholar
  2. 2.
    Muster, T.H., Hughes, A.E., Furman, S.A., et al., Electrochim. Acta, 2009, vol. 54, pp. 3402–3411.CrossRefGoogle Scholar
  3. 3.
    Evans, H.T., Science, 1963, vol. 141, pp. 154–158.CrossRefGoogle Scholar
  4. 4.
    Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., and Tananaev, I.G., Eds., Amsterdam: Elsevier, 2007, p. 494.Google Scholar
  5. 5.
    Brandenburg, N.P. and Loopstra, B.O., Cryst. Struct. Commun., 1973, vol. 2, pp. 243–246.Google Scholar
  6. 6.
    Krivovichev, S.V. and Burns, P.C., Z. Kristallogr., 2003, vol. 218, pp. 568–574.Google Scholar
  7. 7.
    Krivovichev, S.V., Tananaev, I.G., Kahlebnerg, V., and Myasoedov, B.F., Radiochemistry, 2006, vol. 48, no. 3, pp. 213–216.CrossRefGoogle Scholar
  8. 8.
    Siidra, O.I., Nazarchuk, E.V., Suknotova, A.N., et al., Inorg. Chem., 2013, vol. 52, pp. 4729–4735.CrossRefGoogle Scholar
  9. 9.
    Doran, M.B., Norquist, A.J., and O’Hare, D., Acta Crystallogr., Sect. E, 2003, vol. 59, pp. m373–m375.Google Scholar
  10. 10.
    Rogers, R.D., Bond, A.H., Hipple, W.G., et al., Inorg. Chem., 1991, vol. 30, pp. 2671–2679.CrossRefGoogle Scholar
  11. 11.
    Mikhailov, Yu.N., Mistryukov, V.E., Serezhkina, L.B., et al., Zh. Neorg. Khim., 1995, vol. 40, pp. 1288–1240.Google Scholar
  12. 12.
    Serezhkina, L.B. and Trunov, V.K., Zh. Neorg. Khim., 1989, vol. 34, pp. 968–970.Google Scholar
  13. 13.
    Serezhkin, V.N. and Trunov, V.K., Kristallografiya, 1981, vol. 26, pp. 301–304.Google Scholar
  14. 14.
    Van den Putten, N. and Loopstra, B.O., Cryst. Struct. Commun., 1974, vol. 3, pp. 377–380.Google Scholar
  15. 15.
    Zalkin, A., Ruben, H., and Templeton, D.H., Inorg. Chem., 1978, vol. 17, pp. 3701–3702.CrossRefGoogle Scholar
  16. 16.
    Serezhkin, V.N., Soldatkina, M.A., and Efremov, V.A., Zh. Strukt. Khim., 1981, vol. 22, pp. 171–174.Google Scholar
  17. 17.
    Norquist, A.J., Doran, M.B., Thomas, P.M., and O’Hare, D., Dalton Trans., 2003, no. 10, pp. 1168–1175.CrossRefGoogle Scholar
  18. 18.
    Soldatkina, M.A., Serezhkin, V.N., and Trunov, V.K., Zh. Strukt. Khim., 1981, vol. 22, pp. 146–150.Google Scholar
  19. 19.
    Toivonen, J. and Niinisto, L., Inorg. Chem., 1983, vol. 22, pp. 1557–1559.CrossRefGoogle Scholar
  20. 20.
    Andreev, G.B., Antipin, M.Yu., Fedoseev, A.M., and Budantseva, N.A., Crystallogr. Rep., 2001, vol. 46, pp. 383–384.CrossRefGoogle Scholar
  21. 21.
    Serezhkin, V.N., Soldatkina, M.A., Efremov, V.A., and Trunov, V.K., Koord. Khim., 1981, vol. 7, pp. 629–633.Google Scholar
  22. 22.
    Norquist, A.J., Doran, M.B., and O’Hare, D., Solid State Sci., 2003, vol. 5, pp. 1149–1158.CrossRefGoogle Scholar
  23. 23.
    Doran, M.B., Norquist, A.J., and O’Hare, D., Acta Crystallogr., Sect. E, 2003, vol. 59, pp. m765–m767.Google Scholar
  24. 24.
    Ling Jie, Sigmon, G.E., Ward, M., et al., Z. Kristallogr., 2010, vol. 225, pp. 230–239.Google Scholar
  25. 25.
    Verevkin, A.G., Vologzhanina, A.V., Serezhkina, L.B., and Serezhkin, V.N., Crystallogr. Rep., 2010, vol. 55, pp. 602–608.CrossRefGoogle Scholar
  26. 26.
    Krivovichev, S.V. and Burns, P.C., Z. Kristallogr., 2003, vol. 218, pp. 725–732.Google Scholar
  27. 27.
    Mikhailov, Yu.N., Gorbunova, Yu.E., Serezhkina, L.B., and Serezhkin, V.N., Russ. J. Inorg. Chem., 1997, vol. 42, pp. 652–656.Google Scholar
  28. 28.
    Krivovichev, S.V. and Kahlenberg, V., Radiochemistry, 2005, vol. 47, pp. 452–455.CrossRefGoogle Scholar
  29. 29.
    Krivovichev, S.V. and Kahlenberg, V., Z. Anorg. Allg. Chem., 2005, vol. 631, pp. 739–744.CrossRefGoogle Scholar
  30. 30.
    Krivovichev, S.V. and Tananaev, I.G., Zh. Sib. Fed. Univ., Khim., 2009, vol. 2, pp. 133–149.Google Scholar
  31. 31.
    Hennig, C., Kraus, W., Emmerling, F., et al., Inorg. Chem., 2008, vol. 47, pp. 1634–1638.CrossRefGoogle Scholar
  32. 32.
    Magusin, P.C., Zorin, V.E., Aerts, A., et al., J. Phys. Chem. B, 2005, vol. 109, pp. 22767–22774.CrossRefGoogle Scholar
  33. 33.
    Peister, S.A., Schrader, W., and Schüth, F., J. Am. Chem. Soc., 2006, vol. 128, pp. 4310–4317.CrossRefGoogle Scholar
  34. 34.
    Slater, B., Ohsuna, T., Liu, Z., and Terasaki, O., Faraday Disc., 2007, vol. 136, pp. 125–141.CrossRefGoogle Scholar
  35. 35.
    Taulelle, F., Pruski, M., Amoureux, J.P., et al., J. Am. Chem. Soc., 1999, vol. 121, pp. 12148–12153.CrossRefGoogle Scholar
  36. 36.
    Serre, C., Lorentz, C., Taulelle, F., and Ferey, G., Chem. Mater., 2003, vol. 15, pp. 2328–2337.CrossRefGoogle Scholar
  37. 37.
    Serre, S., Taulelle, F., and Ferey, G., Chem. Commun., 2003, no. 22, pp. 2755–2765.CrossRefGoogle Scholar
  38. 38.
    Walton, R.I., Norquist, A.J., Neeraj, S., et al., Chem. Commun., 2001, no. 19, pp. 1990–1991.CrossRefGoogle Scholar
  39. 39.
    Loiseau, T., Beitone, L., and Millange, F., J. Phys. Chem. B, 2004, vol. 108, pp. 20020–20029.CrossRefGoogle Scholar
  40. 40.
    Oliver, S., Kuperman, A., and Ozin, G.A., Angew. Chem. Int. Ed., 1998, vol. 37, pp. 46–62.CrossRefGoogle Scholar
  41. 41.
    Wang, K., Yu, J., Song, Y., and Xu, R., Dalton Trans., 2003, no. 1, pp. 99–103.CrossRefGoogle Scholar
  42. 42.
    Wang, K., Yu, J., Shi, Z., et al., J. Chem. Soc., Dalton Trans., 2001, no. 12, pp. 1809–1812.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • E. V. Nazarchuk
    • 1
  • O. I. Siidra
    • 1
  • R. A. Kayukov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations