Advertisement

Radiochemistry

, Volume 57, Issue 6, pp 565–574 | Cite as

Nature of chemical bond in AmO2

  • Yu. A. Teterin
  • K. I. Maslakov
  • M. V. Ryzhkov
  • A. Yu. Teterin
  • K. E. Ivanov
  • S. N. Kalmykov
  • V. G. Petrov
Article
  • 54 Downloads

Abstract

The participation of Am6p,5f electrons in the chemical bond in AmO2 was studied. Analysis of the structure of the AmO2 X-ray photoelectron spectrum (XPS) in the valence electron binding energy (BE) range (from 0 to ~35 eV), taking into account the results of relativistic calculation of the AmO8 cluster (D 4h) reflecting the nearest surrounding of the Am atom in AmO2, showed that electrons of outer (from 0 to ~15 eV, OVMO) and inner (from ~15 to ~35 eV, IVMO) valence molecular orbitals (MO) noticeably contribute to the structure of the valence electron spectrum. The filled Am5f states appear in the AmO2 OVMO BE range. The atomic orbitals (AO) of Am6p electrons participate in the formation of not only IVMO but also OVMO. The filled Am6p 3/2 and O2s AO participate in the IVMO formation to the greatest extent. The MO composition and sequent order was determined, and the quantitative MO scheme for AmO2 was constructed. The bonding and antibonding contributions of electrons of different MO in the AmO8 cluster were estimated. The MO scheme has fundamental significance not only for understanding the nature of the chemical bond in this dioxide, but also for interpreting the structure of other X-ray spectra of AmO2.

Keywords

americium dioxide electronic structure outer and inner valence molecular orbitals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walter, M., Nastren, C., Somersa, J., et al., J. Solid State Chem., 2007, vol. 180, no. 11, pp. 3130–3135.CrossRefGoogle Scholar
  2. 2.
    Moor, K.T. and van der Laan, G., Rev. Mod. Phys., 2009, vol. 81, no. 1, pp. 235–298.CrossRefGoogle Scholar
  3. 3.
    Naegele, J.R., Ghijsen, J., and Manes, L., Struct. Bond., 1985, vols. 59–60, ch. E, pp. 197–262.CrossRefGoogle Scholar
  4. 4.
    Gouder, T., Oppeneer, P.M., Huber, F., et al., Phys. Rev. B, 2005, vol. 72, p. 115122.CrossRefGoogle Scholar
  5. 5.
    Seibert, A., Gouder, T., and Huber, F., Radiochim. Acta, 2009, vol. 97, nos. 4–5, pp. 247–250.Google Scholar
  6. 6.
    Mayer, K., Kanellakopoulos, B., Naegele, J., and Koch, L., J. Alloys Compd., 1994, vols. 213–214, pp. 456–459.CrossRefGoogle Scholar
  7. 7.
    Veal, B.W., Diamond, H., and Hoekstra, H.R., Phys. Rev. B, 1977, vol. 15, no. 6, pp. 2929–2942.CrossRefGoogle Scholar
  8. 8.
    Suzuki, C., Nishi, T., Nakada, M., et al., J. Phys. Chem. Solids, 2012, vol. 73, pp. 209–216.CrossRefGoogle Scholar
  9. 9.
    Lu, Y., Yang, Y., Zheng, F., et al., J. Nucl. Mater., 2013, vol. 441, pp. 411–420.CrossRefGoogle Scholar
  10. 10.
    Gubanov, V.A., Rosen, A., and Ellis, D.E., J. Phys. Chem. Solids, 1979, vol. 40, pp. 17–28.CrossRefGoogle Scholar
  11. 11.
    Teterin, Yu.A. and Teterin, A.Yu., Russ. Chem. Rev., 2004, vol. 73, no. 6, pp. 541–580.CrossRefGoogle Scholar
  12. 12.
    Shirley, D.A., Phys. Rev. B, 1972, vol. 5, pp. 4709–4713.CrossRefGoogle Scholar
  13. 13.
    Gouder, T. and Havela, L., Radiochim. Acta, 2002, vol. 138, pp. 207–215.Google Scholar
  14. 14.
    Nishi, T., Nakada, M., Suzuki, C., et al., J. Nucl. Mater., 2010, vol. 401, pp. 138–142.CrossRefGoogle Scholar
  15. 15.
    Teterin, Yu.A., Maslakov, K.I., Teterin, A.Yu., et al., Phys. Rev. B, 2013, vol. 87, p. 245 108.CrossRefGoogle Scholar
  16. 16.
    Teterin, Yu.A., Teterin, A.Yu., Ivanov, K.E., et al., Phys. Rev. B, 2014, vol. 89, p. 035 102.CrossRefGoogle Scholar
  17. 17.
    Huang, K.N., Aojogi, M., Chen, M.N., et al., At. Data Nucl. Data Tables, 1976, vol. 18, pp. 243–291.CrossRefGoogle Scholar
  18. 18.
    Band, M., Kharitonov, Yu.I., and Trzhaskovskaya, M.B., At. Data Nucl. Data Tables, 1979, vol. 23, pp. 443–505.CrossRefGoogle Scholar
  19. 19.
    Yarzhemsky, V.G., Teterin, A.Yu., Teterin, Yu.A., and Trzhaskovskaya, M.B., Nucl. Technol. Radiat. Prot., 2012, vol. 27, no. 2, pp. 103–106.CrossRefGoogle Scholar
  20. 20.
    Cox, L.E., Ward, J.W., and Haire, R.G., Phys. Rev. B, 1992, vol. 45, no. 23, pp. 13239–13243.CrossRefGoogle Scholar
  21. 21.
    Teterin, Yu.A. and Gagarin, S.G., Russ. Chem. Rev., 1996, vol. 65, no. 10, pp. 825–848.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • Yu. A. Teterin
    • 1
    • 2
  • K. I. Maslakov
    • 2
  • M. V. Ryzhkov
    • 3
  • A. Yu. Teterin
    • 1
  • K. E. Ivanov
    • 1
  • S. N. Kalmykov
    • 2
  • V. G. Petrov
    • 2
  1. 1.National Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Institute of Solid State ChemistryUral Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations