Advertisement

Radiochemistry

, Volume 57, Issue 4, pp 366–377 | Cite as

Organic reductants of Pu and Np ions in wet technology for spent nuclear fuel reprocessing

  • V. I. Marchenko
  • V. N. Alekseenko
  • K. N. Dvoeglazov
Article

Abstract

Scientific, technical, and patent information on the use of organic compounds as reductants of Pu and Np ions in wet technology for spent nuclear fuel reprocessing is summarized and correlated. Organic derivatives of hydrazine and hydroxylamine, and also oximes and urea derivatives at relatively low acidities and temperatures reduce Np(VI) to Np(V) and Pu(IV) to Pu(III). As the acidity and temperature are increased, Np(V) is slowly reduced to Np(IV). Alcohols, aldehydes, hydrocarbons, and acetic acid were identified among products of oxidation of the organic compounds in nitric acid medium. The above-named organic reductants can be used in different steps of the PUREX process: separation of Pu and Np from U in the first extraction cycle, purification of U to remove Np in the second cycle of uranium purification, and Pu stripping in the step of its final purification. Laboratory experiments performed on countercurrent extraction installations of mixer-settlers and of centrifugal contactors demonstrated the possibility of reaching high separation factors of U from Pu and/or Np and high degrees of plutonium concentration to obtain Pu strips containing up to 150 g L−1 Pu.

Keywords

spent nuclear fuel reprocessing extraction tributyl phosphate nitric acid uranium plutonium neptunium ions reduction organic compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zilberman, B.Ya., Radiochemistry, 2000, vol. 42, no. 1, pp. 1–14.Google Scholar
  2. 2.
    Fedorov, Yu.S., Zilberman, B.Ya., Aloy, A.S., et al., Zh. Ross. Khim. O-va. im. D.I. Mendeleeva, 2010, vol. 54, no. 3, pp. 12–24.Google Scholar
  3. 3.
    Ohyama, K., Nomura, K., Washiya, T., et al., in Proc. Global’2007, Boise, Idaho (USA), Sept. 9–13, 2007, pp. 1461–1466.Google Scholar
  4. 4.
    Mizuguchi, K., Fuse, K., Kanamura, Sh., et al., in Proc. Global’2009, Paris (France), Sept. 6–11, 2009, paper no. 9173.Google Scholar
  5. 5.
    Volk, V., Shadrin, A., Veselov, S., et al., Proc. Global’2011, Makuhari (Japan), Dec. 11–16, 2011, paper no. 386756.Google Scholar
  6. 6.
    Marchenko, V.I., Dvoeglazov, K.N., and Volk, V.I., Radiochemistry, 2009, vol. 51, no. 4, pp. 329–344.CrossRefGoogle Scholar
  7. 7.
    Kosyakov, V.N. and Marchenko, V.I., Radiochemistry, 2008, vol. 50, no. 4, pp. 333–345.CrossRefGoogle Scholar
  8. 8.
    Marchenko, V.I., Zhuravleva, G.I., Dvoeglazov, K.N., and Savilova, O.A., Khim. Tekhnol., 2007, vol. 8, no. 7, pp. 318–323.Google Scholar
  9. 9.
    Koltunov, V.S. and Zhuravleva, G.I., Radiokhimiya, 1978, vol. 20, no. 1, pp. 94–101.Google Scholar
  10. 10.
    Koltunov, V.S. and Baranov, S.M., Radiokhimiya, 1993, vol. 35, no. 6, pp. 11–21.Google Scholar
  11. 11.
    Koltunov, V.S. and Marchenko, V.I., in Proc. RECOD’98, Nice (France), Oct. 25–28, 1998, vol. 1, pp. 425–431.Google Scholar
  12. 12.
    Dvoeglazov, K., Volk, V., Alekseenko, V., et al., Abstracts of Papers, Int. Conf. ATALANTE’2012, Le Corum Montpellier (France), Sept. 2–7, 2012, p. 213.Google Scholar
  13. 13.
    Koltunov, V.S., Baranov, S.M., and Zharova, T.P., Radiokhimiya, 1987, vol. 29, no. 2, pp. 155–160.Google Scholar
  14. 14.
    Baranov, S.M., Koltunov, V.S., and Zharova, T.P., Radiokhimiya, 1991, vol. 33, no. 2, pp. 51–58.Google Scholar
  15. 15.
    Koltunov, V.S., Baranov, S.M., and Koltunov, G.V., Radiochemistry, 2005, vol. 47, no. 2, pp. 168–172.CrossRefGoogle Scholar
  16. 16.
    Volk, V.I., Marchenko, V.I., Dvoeglazov, K.N., et al., Radiochemistry, 2012, vol. 54, no. 2, pp. 143–148.CrossRefGoogle Scholar
  17. 17.
    Alekseenko, V.N., Volk, V.I., Marchenko, V.I., et al., Radiochemistry, 2012, vol. 54, no. 2, pp. 149–152.CrossRefGoogle Scholar
  18. 18.
    Alekseenko, V.N., Carbohydrazide: properties and use in wet extraction technology for spent nuclear fuel reprocessing, Cand. Sci. (Eng.) Dissertation, Moscow, 2013.Google Scholar
  19. 19.
    Koltunov, V.S. and Tikhonov, M.F., Radiokhimiya, 1973, vol. 15, no. 2, pp. 194–199.Google Scholar
  20. 20.
    Koltunov, V.S. and Zhuravleva, G.I., Radiokhimiya, 1974, vol. 16, no. 1, pp. 84–88.Google Scholar
  21. 21.
    Koltunov, V.S., Baranov, S.M., and Zhuravleva, G.I., Radiokhimiya, 1989, vol. 31, no. 1, pp. 50–55.Google Scholar
  22. 22.
    Taylor, R.J., May, I., Koltunov, V.S., et al., Radiochim. Acta, 1998, vol. 81, no. 3, pp. 149–146CrossRefGoogle Scholar
  23. 23.
    Baranov, S.M. and Koltunov, V.S., Radiokhimiya, 1991, vol. 33, no. 4, pp. 58–66.Google Scholar
  24. 24.
    Koltunov, V.S., Baranov, S.M., Mezhov, E.A., and Pastushchak, V.G., Radiochemistry, 2000, vol. 42, no. 2, pp. 123–127.Google Scholar
  25. 25.
    Koltunov, V.S., Baranov, S.M., and Zharova, T.P., Radiokhimiya, 1993, vol. 35, no. 3, pp. 25–30.Google Scholar
  26. 26.
    Koltunov, V.S., Pastushchak, V.G., and Koltunov, G.V., Radiochemistry, 2006, vol. 48, no. 4, pp. 348–351.CrossRefGoogle Scholar
  27. 27.
    Koltunov, V.S., Baranov, S.M., and Zharova, T.P., Radiokhimiya, 1993, vol. 35, no. 3, pp. 31–38.Google Scholar
  28. 28.
    Alekseenko, V.N., Dvoeglazov, K.N., Marchenko, V.I., et al., J. Radioanal. Nucl. Chem., 2015, vol. 304, no. 1, pp. 201–206.CrossRefGoogle Scholar
  29. 29.
    Koltunov, V.S., J. Nucl. Sci. Technol., suppl. 3, 2002, November, pp. 347–350.Google Scholar
  30. 30.
    Uchiyama, G., Hotoku, S., Kihara, T., et al., in Proc. ISEC’90, Kyoto (Japan), July 16–21, 1990, Amsterdam: Elsevier, 1992, paper no. 04-29.Google Scholar
  31. 31.
    Uchiyama, G., Asakura, H., Watanabe, M., et al., in Proc. ISEC’96, Melbourne (Australia), 1996, vol. 2, pp. 1291–1296.Google Scholar
  32. 32.
    Uchiyama, G., Asakura, H., Hotoku, S., and Fujine, S., in Proc. RECOD’98, Nice (France), Oct. 25–28, 1998, vol. 1, pp. 393–400.Google Scholar
  33. 33.
    Mineo, H., Asakura, H., Hotoku, S., et al., in Proc. Global’2003, New Orleans (USA), Nov. 16–20, 2003, pp. 1250–1255.Google Scholar
  34. 34.
    Kolarik, Z., US Patent 4 659 551, 1987.Google Scholar
  35. 35.
    Zilberman, B.Ya., Sytnik, L.V., Shadrin, A.Yu., et al., RF Patent 2 454 740, Byull. Izobret., 2012, no. 18.Google Scholar
  36. 36.
    Melent’ev, A.B., Mashkin, A.N., Tugarina, O.V., et al., Radiochemistry, 2011, vol. 53, no. 3, pp. 256–263.CrossRefGoogle Scholar
  37. 37.
    Garraway, J. and Wilson, P., J. Less-Common Met., 1984, vol. 97, no. 2, pp. 191–203.CrossRefGoogle Scholar
  38. 38.
    Mashkin, A.N. and Belyaev, E.M., Abstracts of Papers, Pyataya Rossiiskaya konferentsiya po radiokhimii “Radiokhimiya-2006” (Fifth Russian Conf. on Radiochemistry “Radiochemistry-2006”), Dubna, Oct. 23–27, 2006, Ozersk: Mayak, 2006, pp. 198–199.Google Scholar
  39. 39.
    Ramazanov, L.M., Rovnyi, S.I., Glagolenko, Yu.V., et al., RF Patent 2 307 794, Appl. Oct. 12, 2005, Publ. Oct. 10, 2007.Google Scholar
  40. 40.
    Volk, V.I., Dvoeglazov, K.N., Alekseenko, V.N., et al., RF Patent 2 514 947, Appl. March 5, 2012, Publ. May 10, 2014.Google Scholar
  41. 41.
    Dvoeglazov, K., Alekseenko, V., Marchenko, V., et al., Abstracts of Papers, Proc. 17th Radiochemical Conf., Marianske Lazne (Czech Republic), May 11–16, 2014, p. 201.Google Scholar
  42. 42.
    Dvoeglazov, K., Volk, V., Alekseenko, V., et al., in Proc. Global’2013, Salt Lake City (USA), Sept. 29–Oct. 03, 2013, paper no. 7680.Google Scholar
  43. 43.
    Dvoeglazov, K.N., Logunov, M.V., Podrezova, L.N., et al., Abstracts of Papers, Sed’maya Rossiiskaya konferentsiya po radiokhimii “Radiokhimiya-2012” (Seventh Russian Conf. on Radiochemistry “Radiochemistry-2012”), Dimitrovgrad, Oct. 15–19, 2012, p. 122.Google Scholar
  44. 44.
    Koltunov, V.S., Baranov, S.M., Zharova, T.P., and Shapovalov, M.P., Radiokhimiya, 1993, vol. 35, no. 4, pp. 71–78.Google Scholar
  45. 45.
    Koltunov, V.S., Baranov, S.M., Zharova, T.P., and Abramina, E.V., Radiokhimiya, 1993, vol. 35, no. 4, pp. 79–84.Google Scholar
  46. 46.
    Koltunov, V.S., Baranov, S.M., and Shapovalov, M.P., Radiokhimiya, 1993, vol. 35, no. 4, pp. 85–92.Google Scholar
  47. 47.
    Wang, J., Bao, B., Wu, M., et al., J. Radioanal. Nucl. Chem., 2004, vol. 262, no. 2, pp. 451–453.CrossRefGoogle Scholar
  48. 48.
    Zhang, A., Hu, J., Zhang, X., and Wang, F., J. Radioanal. Nucl. Chem., 1998, vol. 230, nos. 1–2, pp. 235–239.Google Scholar
  49. 49.
    Koltunov, V.S. and Baranov, S.M., Radiokhimiya, 1993, vol. 35, no. 4, pp. 54–62.Google Scholar
  50. 50.
    Chen, Y., Tang, H., Liu, J., and He, H., J. Radioanal. Nucl. Chem., 2001, vol. 289, no. 1, pp. 41–47.CrossRefGoogle Scholar
  51. 51.
    Koltunov, V.S. and Tikhonov, M.F., Radiokhimiya, 1977, vol. 19, no. 5, pp. 611–619.Google Scholar
  52. 52.
    Koltunov, V.S., Baranov, S.M., Zharova, T.P., and Abramina, E.V., Radiokhimiya, 1993, vol. 35, no. 4, pp. 49–53.Google Scholar
  53. 53.
    Baranov, S.M., Koltunov, V.S., Taylor, R.J., and May, I., US Patent 6 444 182, Sept. 3, 2002, Appl. July 11, 2000.Google Scholar
  54. 54.
    Zhang, A., Hu, J., Zhang, X., et al., J. Radioanal. Nucl. Chem., 2002, vol. 252, no. 3, pp. 565–571.CrossRefGoogle Scholar
  55. 55.
    Zhang, A. and Liu, Y., J. Radioanal. Nucl. Chem., 2000, vol. 245, no. 2, pp. 357–361.CrossRefGoogle Scholar
  56. 56.
    Gowland, R. and Stedman, G., J. Inorg. Nucl. Chem., 1981, vol. 43, no. 11, pp. 2859–2862.CrossRefGoogle Scholar
  57. 57.
    Li, G. and He, H., J. Radioanal. Nucl. Chem., 2011, vol. 287, no. 3, pp. 673–678.CrossRefGoogle Scholar
  58. 58.
    Zhang, H., Ye, G., Cong, H., et al., in Proc. Global’2011, Makuhari (Japan), Dec. 11–16, 2011, paper no. 465 979.Google Scholar
  59. 59.
    Liu, J., He, H., Tang, H., and Chen, Y., J. Radioanal. Nucl. Chem., 2011, vol. 288, no. 2, pp. 351–356.CrossRefGoogle Scholar
  60. 60.
    Hui, W., Yan, W., and Fang, L., Abstracts of Papers, Int. Conf. ATALANTE’2012, Le Corum Montpellier (France), Sept. 2–7, 2012, p. 278.Google Scholar
  61. 61.
    Zhang, A., Hu, J., Zhang, X., and Wang, F., J. Radioanal. Nucl. Chem., 1998, vol. 253, no. 1, pp. 107–113.CrossRefGoogle Scholar
  62. 62.
    Zilberman, B.Ya., Fedorov, Yu.S., Sytnik, L.V., et al., Khim. Tekhnol., 2000, no. 6, pp. 16–21.Google Scholar
  63. 63.
    Paulenova, A. and Tkac, P., in Proc. Global’2007, Boise, Idaho (USA), Sept. 9–13, 2007, pp. 723–727.Google Scholar
  64. 64.
    Zilberman, B.Ya., Mashkin, A.N., Nardova, A.K., et al., RF Patent 2 012 075, Appl. May 14, 1992, Publ. April, 30, 1994.Google Scholar
  65. 65.
    Guoan, Y., Hui, H., and Wenbin, Z., Abstracts of Papers, Int. Conf. ATALANTE’2012, Le Corum Montpellier (France), Sept. 2–7, 2012, p. 62.Google Scholar
  66. 66.
    Glatz, J.-P., Malmbeck, P., Ougier, M., et al., in Proc. Global’2013, Salt Lake City (USA), Sept. 29–Oct. 03, 2013, paper no. 8196.Google Scholar
  67. 67.
    Bernier, G., Miguirditchain, M., Ameil, E., et al., Abstracts of Papers, Int. Conf. ATALANTE’2012, Le Corum Montpellier (France), Sept. 2–7, 2012, p. 69.Google Scholar
  68. 68.
    Sukumar, S., Pradep Rumar Sharma, Govindan, P., and Subba Rao, R.V., J. Radioanal. Nucl. Chem., 2013, vol. 295, pp. 191–196.CrossRefGoogle Scholar
  69. 69.
    Liu, F., Sun, Y., Wang, H., and Zheng, W., J. Radioanal. Nucl. Chem., 2014, vol. 299, no. 3, pp. 1329–1333.CrossRefGoogle Scholar
  70. 70.
    Chung, D.Y. and Lee, E.H., Final Program and Abstracts, Actinides’2005, Manchester (UK), July 4–8, 2005, paper no. 5P26.Google Scholar
  71. 71.
    May, I., Taylor, R.J., Wallwork, A.L., et al., J. Alloys Compd., 1998, vols. 271–273, pp. 534–537.Google Scholar
  72. 72.
    Taylor, R.J., Denniss, I.S., and May, I., in Proc. ATALANTE’ 2000, Avignon (France), Oct. 24–26, 2000, paper no. P2-15.Google Scholar
  73. 73.
    Taylor, R.J., J. Nucl. Sci. Technol., suppl. 3, 2002, November, pp. 886–889.Google Scholar
  74. 74.
    Carrot, M.J., Fox, O.D., Le Gurun, G., et al., Radiochim. Acta, 2008, vol. 96, no. 6, pp. 333–343.Google Scholar
  75. 75.
    Tkac, P., Precek, M., and Paulenova, A., in Proc. Global’2009, Paris (France), Sept. 6–11, 2009, paper no. 9122.Google Scholar
  76. 76.
    Carrott, M.J., Fox, O.D., Jones, C.J., et al., Solvent Extr. Ion Exch., 2007, vol. 25, no. 6, pp. 723–745.CrossRefGoogle Scholar
  77. 77.
    Taylor, R.J., Sinkov, S.I., Choppin, G.R., and May, I., Solvent Extr. Ion Exch., 2008, vol. 26, no. 1, pp. 41–61.CrossRefGoogle Scholar
  78. 78.
    Birkett, J., Carrot, M., Fox, O., et al., J. Nucl. Sci. Technol., 2007, vol. 44, no. 3, pp. 337–343.CrossRefGoogle Scholar
  79. 79.
    Bernier, G., Miguirditchain, M., Ameil, E., et al., Procedia Chem., 2012, vol. 7, pp. 160–165.CrossRefGoogle Scholar
  80. 80.
    Gavrilov, P.M., Kudryavtzev, E.G., Revenko, Yu.A., et al., in Proc. Global’2009, Paris (France), Sept. 6–11, 2009, paper no. 9075.Google Scholar
  81. 81.
    Gavrilov, P.M., Khaperskaya, A.V., Fedorov, Yu.S., et al., in Proc. Global’2011, Makuhari Messe, Chiba (Japan), Dec. 11–16, 2011, paper no. 501 241.Google Scholar
  82. 82.
    Fedorov, Yu.S., Zilberman, B.Ya., Goletskiy, N.D., et al., in Proc. Global’2013, Salt Lake City (USA), Sept. 29–Oct. 03, 2013, paper no. 9155.Google Scholar
  83. 83.
    Goletskii, N.D., Zilberman, B.Ya., Fedorov, Yu.S., et al., Radiochemistry, 2014, vol. 56, no. 5, pp. 501–514.CrossRefGoogle Scholar
  84. 84.
    Shilov, V.P., Krot, N.N., and Stepanova, E.S., Radiokhimiya, 1976, vol. 18, no. 2, pp. 355–359.Google Scholar
  85. 85.
    Koltunov, V.S., Taylor, R.J., Baranov, S.M., et al., in Proc. ATALANTE’2000, Avignon (France), Oct. 24–26, 2000, paper no. O1-06.Google Scholar
  86. 86.
    Koltunov, V.S., Mezhov, E.A., and Baranov, S.M., Radiochemistry, 2001, vol. 43, no. 4, pp. 342–345.CrossRefGoogle Scholar
  87. 87.
    Koltunov, V.S., Baranov, S.M., and Pastushchak, V.G., Radiochemistry, 2001, vol. 43, no. 4, pp. 346–349.CrossRefGoogle Scholar
  88. 88.
    Sze, Y.-K. and Gosselin, J.A., Nucl. Technol., 1983, vol. 63, no. 3, pp. 431–441.Google Scholar
  89. 89.
    Yan, T., Zheng, W., Ye, G., et al., in Proc. Global’2009, Paris (France), Sept. 6–11, 2009, paper no. 9523.Google Scholar
  90. 90.
    Yan, T.H., Zheng, W.F., Zuo, C., et al., Radiochim. Acta, 2010, vol. 98, no. 1, pp. 35–38.CrossRefGoogle Scholar
  91. 91.
    Zhu, Zh., He, J., Zhang, Z., et al., J. Radioanal. Nucl. Chem., 2004, vol. 260, no. 3, pp. 601–606.CrossRefGoogle Scholar
  92. 92.
    Zhu, Zh., He, J., Zhang, Z., et al., J. Radioanal. Nucl. Chem., 2004, vol. 262, no. 3, pp. 707–711.CrossRefGoogle Scholar
  93. 93.
    Sivakumar, P., Mecnakshi, S., and Subba Rao, R.V., J. Radioanal. Nucl. Chem., 2012, vol. 292, no. 2, pp. 603–608.CrossRefGoogle Scholar
  94. 94.
    Xian Liang, Yan Taihong, Zheng Weifang, et al., Radiochemistry, 2009, vol. 51, no. 4, pp. 365–367.CrossRefGoogle Scholar
  95. 95.
    Yan, T., Zheng, W., Ye, G., et al., in Proc. Global’2011, Makuhari (Japan), Dec. 11-16, 2011, paper no. 391241.Google Scholar
  96. 96.
    Lopyrev, V.A., Dolgushin, G.V., and Voronkov, M.G., Russ. J. Appl. Chem., 1998, vol. 71, no. 8, pp. 1295–1309.Google Scholar
  97. 97.
    Kumar, S., Singh, P.K., Kamachi Midali, U., and Natarajan, R., J. Radioanal. Nucl. Chem., 2012, vol. 292, no. 3, pp. 1131–1135.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. I. Marchenko
    • 1
  • V. N. Alekseenko
    • 2
  • K. N. Dvoeglazov
    • 1
  1. 1.Bochvar High-Tech Research Institute of Inorganic MaterialsMoscowRussia
  2. 2.Federal Center for Nuclear and Radiation SafetyMoscowRussia

Personalised recommendations