Advertisement

Radiochemistry

, Volume 57, Issue 2, pp 200–206 | Cite as

A polyphase geoceramic matrix for joint immobilization of the strontium-cesium and rare earth fractions of high-level waste

  • R. A. Kuznetsov
  • N. V. Platonova
  • R. V. Bogdanov
Article

Abstract

Polyphase geoceramic matrices of the (silico)phosphate type for joint immobilization of the strontium-cesium and rare earth fractions of high-level waste with residual actinide content were synthesized. The charge components were iron oxide, technical-grade phosphoric acid, and apatite ore dressing tails. The synthesis method involves fine dispersion of the starting materials and two-step ceramization at 920 and 910°C for 20 min. The total content of the radionuclides in the matrix is on the level of 15 wt %. The cesium leach rate under the conditions of kinetic control (at 90°C) is 5 × 10−7 g cm−2 day−1.

Keywords

high-level waste (HLW) HLW immobilization geoceramic matrices ultradisperse synthesis leach rate water resistance of matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laverov, N.P., Velichkin, V.I., Omel’yanenko, B.I., et al., Izolyatsiya otrabotavshikh yadernykh materialov: geologo-geokhimicheskie osnovy (Isolation of Spent Nuclear Materials: Geological and Geochemical Principles), vol. 5 of Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy (Environmental and Climatic Changes: Natural and Related Technogenic Disasters), Laverov, N.P., Ed., Moscow: Inst. Fiziki Zemli Ross. Akad. Nauk, 2008.Google Scholar
  2. 2.
    Romanovskiy, V.N., Smirnov, I.V., Babain, V.A., et al., US Patent 6 258 333, July 10, 2001.Google Scholar
  3. 3.
    Romanovskiy, V.N., Smirnov, I.V., Babain, V.A., et al., US Patent 6 468 445, Oct. 22, 2002.Google Scholar
  4. 4.
    Kuznetsov, R.A. and Bogdanov, R.V., Vestn. Sankt-Peterb. Gos. Univ., Ser. 4, 2010, issue 4, pp. 126–130.Google Scholar
  5. 5.
    Bogdanov, R.V., Kuznetsov, R.A., Epimakhov, V.N., et al., Recent Pat. Eng., 2013, vol. 7, no. 3, pp. 209–219.CrossRefGoogle Scholar
  6. 6.
    Kuznetsov, R.A., Gamuletskaya, O.A., and Bogdanov, R.V., Radiochemistry, 2013, vol. 55, no. 6, pp. 634–638.CrossRefGoogle Scholar
  7. 7.
    Bois, L., Guittet, M.J., Carrot, F., et al., J. Nucl. Mater., 2001, vol. 297, pp. 129–137.CrossRefGoogle Scholar
  8. 8.
    Dacheux, N., Clavier, N., Robinsson, A.-C., et al., C. R. Chim., 2004, vol. 7, pp. 1141–1152.CrossRefGoogle Scholar
  9. 9.
    El Ouenzerfi, R., Cohen-Adad, M.-T., Goutaudier, C., and Panczer, G., Solid State Ionics, 2005, vol. 176, pp. 225–231.CrossRefGoogle Scholar
  10. 10.
    Veilly, E., Du Fou de Kerdaniel, E., Roques, J., et al., Inorg. Chem., 2006, vol. 47, pp. 10 971–10 979.CrossRefGoogle Scholar
  11. 11.
    Livshits, T.S., Geol. Ore Deposits, 2006, vol. 48, no. 5, pp. 357–368.CrossRefGoogle Scholar
  12. 12.
    Bertolus, M. and Defranceschi, M., J. Phys. Chem. B, 2006, vol. 110, pp. 19 226–19232.CrossRefGoogle Scholar
  13. 13.
    Terra, O., Dacheux, N., Auduberth, F., and Podor, R., J. Nucl. Mater., 2006, vol. 352, pp. 224–323.CrossRefGoogle Scholar
  14. 14.
    Omel’yanenko, B.I., Livshits, T.S., Yudintsev, S.V., and Nikonov, B.S., Geol. Ore Deposits, 2007, vol. 49, no. 3, pp. 173–193.CrossRefGoogle Scholar
  15. 15.
    Terra, O., Auduberth, F., Daucheux, N., et al., J. Nucl. Mater., 2007, vol. 366, pp. 70–86.CrossRefGoogle Scholar
  16. 16.
    Livshits, T. and Yudintsev, S., Natural and synthetic minerals—matrices (forms) for actinide waste immobilization, Minerals as Advanced Materials, Krivovichev, S.V., Ed., Springer, 2008, pp. 193–207.CrossRefGoogle Scholar
  17. 17.
    Zubekhin, A.P., Fiziko-khimicheskie metody issledovaniya silikatnykh materialov (Physicochemical Methods for Studying Silicate Materials), St. Petersburg: Sintez. 1995.Google Scholar
  18. 18.
    Masse, R., Bull. Soc. Fr. Mineral. Cristallogr., 1972, vol. 95, p. 405.Google Scholar
  19. 19.
    Boudjada, A. and Perret, R., C. R. Seances Acad. Sci., Ser. C, 1977, vol. 284, pp. 41–44.Google Scholar
  20. 20.
    Battle, P.D., Gibb, T., Nixon, S., and Harrison, W.T.A., J. Solid State Chem., 1988, vol. 75, pp. 21–29.CrossRefGoogle Scholar
  21. 21.
    Battle, P.D., Cheetham, A.K., Harrison, W.T.A., and Long, G.J., J. Solid State Chem., 1988, vol. 62, no. 1, pp. 16–25.CrossRefGoogle Scholar
  22. 22.
    Hidouri, M., Jerbi, H., and Amara, M.B., Acta Crystallogr., Sect. E, 2008, vol. 64, p. i51.CrossRefGoogle Scholar
  23. 23.
    Orlova, A.I., Koryttseva, A.K., and Loginova, E.E., Radiochemistry, 2011, vol. 53, no. 1, pp. 48–57.Google Scholar
  24. 24.
    Sobolev, I.A., Ozhovan, M.I., Shcherbakova, T.D., and Batyukhnova, O.G., Stekla dlya radioaktivnykh otkhodov (Glasses for Radioactive Wastes), Moscow: Energoatomizdat. 1999.Google Scholar
  25. 25.
    Lee, W.E., Ojovan, M.I., Stennet, M.C., and Hyatt, N.C., Adv. Appl. Ceram., 2006, vol. 105, no. 1, pp. 3–12.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • R. A. Kuznetsov
    • 1
  • N. V. Platonova
    • 1
  • R. V. Bogdanov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations