, Volume 56, Issue 6, pp 649–656 | Cite as

Regional flow and transport simulation of liquid radioactive waste disposal at the Siberian chemical combine for long- and super-long-term postinjection periods

  • M. L. Glinskii
  • S. P. PozdniakovEmail author
  • L. G. Chertkov
  • A. A. Zubkov
  • V. V. Danilov
  • V. A. Bakshevskaia
  • V. N. Samartsev


Regional groundwater flow and transport models were substantiated for the site of underground disposal of liquid radioactive waste from the Siberian Chemical Combine. The migration of a neutral component and two radionuclides (90Sr and U) in groundwaters was predicted for the long-(1000 years) and super-long-term (10 000 years) periods using the microdispersion and macrodispersion approaches. A local model-insert of the lithological and hydraulic heterogeneity was developed for substantiating the macrodispersion parameters. The simulation results show that, during the long-term period, the contaminated waters will be mainly localized within the injection zone (below buffer horizon IV), and during the super-long-term period about 90% of the total amount of neutral wastes will be discharged into the drainage network, whereas uranium will be fully retained within the disposal site.


Siberian Chemical Combine radioactive waste underground disposal radionuclide migration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rumynin, V.G., Subsurface Solute Transport Models and Case Histories (with Applications to Radionuclide Migration), Springer, 2011.CrossRefGoogle Scholar
  2. 2.
    Rybal’chenko, A.I., Pimenov, M.K., and Kostin, P.P., Glubinnoe zakhoronenie zhidkikh radioaktivnykh otkhodov (Deep Disposal of Liquid Radioactive Wastes), Moscow: IzdAT, 1994.Google Scholar
  3. 3.
    Podobina, V.M., Foraminifery, biostratigrafiya verkhnego mela i paleogena Zapadnoi Sibiri (Foraminifera, Biostratigraphy of the Upper Cretaceous and Paleogene of West Siberia), Tomsk: Izd. Nauchno-Tekhnicheskoi Literatury, 2009.Google Scholar
  4. 4.
    Pozdniakov, S.P., Bakshevskaya, V.A., Zubkov, A.A., et al., Underground Injection Science and Technology, Tsang, C.F. and Apps, J., Eds., Elsevier, 2005, pp. 203–218.Google Scholar
  5. 5.
    Bakshevskaya, V.A., Vestn. Mosk. Gos. Univ., Ser. 4: Geol., 2005, no. 1, pp. 45–47.Google Scholar
  6. 6.
    Pozdniakov, S.P., Bakshevskaya, V.A., Krokhicheva, I.V., et al., Moscow Univ. Geol. Bull., 2012, vol. 67, no. 1, pp. 43–51.CrossRefGoogle Scholar
  7. 7.
    Zinin, A.I., Zinina, G.A., Kurochkin, V.M., et al., in Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems: Fundamentals, Modelling, Experiments and Applications: vol. 2 of Elsevier Geo-Engineering Book Ser., Elsevier, 2004, pp. 747–752.Google Scholar
  8. 8.
    Shestakov, V.M., Kuvaev, A.A., Lekhov, A.V., et al., Environ. Geol., 2002, vol. 42, nos. 2–3, pp. 214–221.Google Scholar
  9. 9.
    Noskov, M.D., Istomin, A.D., Kesler, A.G., et al., Radiochemistry, 2007, vol. 29, no. 2, pp. 204–209.CrossRefGoogle Scholar
  10. 10.
    Murray, C.J., Zachara, J.M., McKinley, J.P., et al., J. Contam. Hydrol., 2013, vol. 153, pp. 122–140.CrossRefGoogle Scholar
  11. 11.
    Chiang, W.H. and Kinzelbach, W., 3D-Groundwater Modeling with PMWIN, Berlin: Springer, 2001.Google Scholar
  12. 12.
    Tokarev, I.V., Zubkov, A.A., Rumynin, V.G., et al., Water Resources, 2009, vol. 36, no. 2, pp. 206–213.CrossRefGoogle Scholar
  13. 13.
    Danilov, V.V., Mathematical modeling of deep disposal of liquid radioactive waste (by the example of Siberian Chemical Combine), Cand. Sci. (Geol.-Mineral.) Dissertation, Tomsk, 2010.Google Scholar
  14. 14.
    Bakshevskaya, V.A., in Gidrologiya segodnya i zavtra: nauka, obrazovanie, praktika: Materialy mezhdunarodnoi nauchnoi konferentsii (Hydrology Today and Tomorrow: Science, Education, Practice: Proc. Int. Scientific Conf.), Moscow, May 22–24, 2013, Moscow: MAKS, 2013, pp. 276–282.Google Scholar
  15. 15.
    Carle, S.F. and Fogg, G.E., Math. Geol., 1996, vol. 28, no. 4, pp. 453–477.CrossRefGoogle Scholar
  16. 16.
    Carle, S.F. and Fogg, G.E., Math. Geol., 1997, vol. 29, no. 7, pp. 891–918.CrossRefGoogle Scholar
  17. 17.
    Bakshevskaya, V.A. and Pozdniakov, S.P., Geoekol. Inzh. Geol. Gidrogeol. Geokriol., 2012, no. 6, pp. 560–570.Google Scholar
  18. 18.
    Carle, S.F., T-PROGS: Transition Probability Geostatistical Software, Ver. 2.0, Davis, California: Univ. of California, 1998.Google Scholar
  19. 19.
    Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., MODFLOW-2000, the US Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, Reston, 2000.Google Scholar
  20. 20.
    Mironenko, V.A. and Rumynin, V.G., Problemy gidrogeoekologii (Problems of Hydrogeoecology), vol. 1: Teoreticheskoe izuchenie i modelirovanie geomigratsionnykh protsessov (Theoretical Study and Modeling of Geomigration Processes), Moscow: Mosk. Gos. Gornyi Univ., 1998.Google Scholar
  21. 21.
    Shestakov, V.M., Gidrogeodinamika (Hydrogeodynamics), Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  22. 22.
    Lekhov, A.V., Fiziko-khimicheskaya gidrogeodinamika: uchebnik (Physicochemical Hydrogeodynamics: Textbook), Moscow: KDU, 2010.Google Scholar
  23. 23.
    Zheng, C. and Wang, P.P., MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems. Documentation and Users Guide: Contract Report SERDP-99-1, Vicksburg, MS: US Army Engineer Research and Development Center, 2002.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. L. Glinskii
    • 1
  • S. P. Pozdniakov
    • 2
    Email author
  • L. G. Chertkov
    • 1
  • A. A. Zubkov
    • 3
  • V. V. Danilov
    • 3
  • V. A. Bakshevskaia
    • 4
  • V. N. Samartsev
    • 2
  1. 1.FGUGP GidrospetsgeologiyaMoscowRussia
  2. 2.Geological FacultyLomonosov State UniversityMoscowRussia
  3. 3.Siberian Chemical CombineSeversk, Tomsk oblastRussia
  4. 4.Water Problems InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations