Advertisement

Radiochemistry

, Volume 55, Issue 5, pp 461–465 | Cite as

A comparative study of the chemical properties of element 120 and its homologs

  • Yu. A. DemidovEmail author
  • A. V. Zaitsevskii
Article
  • 79 Downloads

Abstract

The electronic structure and energetics were calculated for molecules of binary compounds of element 120 and its homologs with common elements strongly differing in chemical properties. The calculations were performed within the framework of the relativistic density functional theory using the model of precision two-component atomic core pseudopotentials. The results obtained show that all the examined compounds of element 120 should differ from the corresponding compounds of the known heavy metals of the second group (Sr-Ra) in lower strengths and larger lengths of chemical bonds. Therefore, one can suppose that element 120 will be, on the whole, more inert chemically than its nearest homologs.

Keywords

transactinides electronic structure modeling relativistic density functional theory relativistic pseudopotentials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oganessian, Y.T., Eur. Phys. J. A, 2009, vol. 42, pp. 361–367.CrossRefGoogle Scholar
  2. 2.
    Oganessian, Y.T., Abdullin, F.S., Bailey, P.D., et al., Phys. Rev. Lett., 2010, vol. 104, pp. 142502-1–4.CrossRefGoogle Scholar
  3. 3.
    Popeko, A., Proc. DAE Symp. on Nucl. Phys., Chatterjee, A., Biswas, D.C., Shukla, P., and Visakhapatnam, A.P., Eds., Andhra Univ., 2011, vol. 56, pp. 24–32.Google Scholar
  4. 4.
    Oganessian, Y.T., Utyonkov, V.K., Lobanov, Yu.V., et al., Phys. Rev. C, 2009, vol. 79, pp. 024 603-1–4.Google Scholar
  5. 5.
    Oganessian, Y., J. Phys. G: Nucl. Part. Phys., 2007, vol. 34, pp. R165–R242.CrossRefGoogle Scholar
  6. 6.
    Oganessian, Y., Radiochim. Acta, 2011, vol. 99, pp. 429–439.CrossRefGoogle Scholar
  7. 7.
    Eichler, R., Aksenov, N.V., Belozerov, A.V., et al., Nature, 2007, vol. 447, no. 7140, pp. 72–75.CrossRefGoogle Scholar
  8. 8.
    Eichler, R., Aksenov, N.V., Albin, Yu.V., et al., Radiochim. Acta, 2010, vol. 98, no. 3, pp. 133–139.CrossRefGoogle Scholar
  9. 9.
    Sobiczewski, A., Acta Phys. Pol. B, 2011, vol. 42, no. 8, pp. 1871–1879.CrossRefGoogle Scholar
  10. 10.
    Zaitsevskii, A.V., van Wüllen, C., and Titov, A.V., Russ. Chem. Rev., 2009, vol. 78, no. 12, pp. 1173–1181.CrossRefGoogle Scholar
  11. 11.
    Dinh, T.H., Dzuba, V.A., Flambaum, V.V., and Ginges, J.S.M., Phys. Rev. A, 2008, vol. 78, pp. 054501-1–4.Google Scholar
  12. 12.
    Moore, C.E., Atomic Energy Levels, Washington: NBS, 1958, vol. 3, no. 467.Google Scholar
  13. 13.
    Skripnikov, L.V., Mosyagin, N.S., and Titov, A.V., Chem. Phys. Lett., 2013, vol. 555, pp. 79–83.CrossRefGoogle Scholar
  14. 14.
    Pershina, V., Borschevsky, A., and Anton, J., J. Chem. Phys., 2012, vol. 136, p. 134 317.Google Scholar
  15. 15.
    Borschevsky, A., Pershina, V., Eliav, E., and Kaldor, U., Phys. Rev. A, 2013, vol. 87, pp. 022 502-1–8.CrossRefGoogle Scholar
  16. 16.
    Mosyagin, N.S., Zaitsevskii, A.V., and Titov, A.V., Int. Rev. At. Mol. Phys., 2010, vol. 1, pp. 63–72.Google Scholar
  17. 17.
    Mosyagin, N.S., Petrov, A.N., Titov, A.V., and Tupitsyn, I.I., Prog. Theor. Chem. Phys., 2006, vol. 15, pp. 229–252.CrossRefGoogle Scholar
  18. 18.
    Van Wüllen, C., Z. Phys. Chem., 2010, vol. 224, pp. 413–426.CrossRefGoogle Scholar
  19. 19.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, pp. 6158–6170.CrossRefGoogle Scholar
  20. 20.
    Zaitsevskii, A., Titov, A.V., Rusakov, A.A., and van Wüllen, C., Chem. Phys. Lett., 2011, vol. 508, pp. 329–331.CrossRefGoogle Scholar
  21. 21.
    Schäfer, A., Huber, C., and Ahlrichs, R., J. Chem. Phys., 1994, vol. 100, pp. 5829–5835.CrossRefGoogle Scholar
  22. 22.
    Zaitsevskii, A.V., Rykova, E.A., and Titov, A.V., Russ. Chem. Rev., 2008, vol. 77, no. 3, pp. 205–218.CrossRefGoogle Scholar
  23. 23.
    Zaitsevskii, A.V., Titov, A.V., Mal’kov, S.S., et al., Dokl. Chem., 2013, vol. 448, part 1, pp. 1–3.CrossRefGoogle Scholar
  24. 24.
    Darwent, B. de B., Bond Dissociation Energies in Simple Molecules, Washington: NBS, 1970.Google Scholar
  25. 25.
    Kohn, W., Meir, Y., and Makarov, D.E., Phys. Rev. Lett., 1998, vol. 80, pp. 4153–4156.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Petersburg Nuclear Physics Institute, Orlova roshcha, GatchinaLeningrad oblastRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations