Advertisement

Radiochemistry

, Volume 53, Issue 1, pp 73–80 | Cite as

Production of 225Ac and 223Ra by irradiation of Th with accelerated protons

  • B. L. Zhuikov
  • S. N. Kalmykov
  • S. V. Ermolaev
  • R. A. Aliev
  • V. M. Kokhanyuk
  • V. L. Matushko
  • I. G. Tananaev
  • B. F. Myasoedov
Article

Abstract

The possibility of producing 225Ac and 223Ra by irradiation of natural 232Th with medium-energy protons was examined. Thorium foils were irradiated with 90-, 110-, and 135-MeV protons at the accelerator of the Institute for Nuclear Research, Russian Academy of Sciences, in Troitsk (Moscow oblast). The cumulative production cross sections for 225Ac were 6.7 ± 0.9, 9.8 ± 1.9, and 13.9 ± 1.5 mb, and for 227Th (223Ra precursor), 43 ± 5, 37 ± 6, and 35 ± 4 mb, respectively. Based on the experimental data and theoretical calculations, the possible yields of 225Ac and 223Ra in irradiation of thick thorium targets at various accelerators were determined. An efficient procedure was suggested for isolating the products from the irradiated targets: 225Ac, by liquid extraction and extraction chromatography, and 223Ra, by sublimation from a thorium-lanthanum melt followed by thermochromatographic separation in metallic titanium columns and extraction-chromatographic isolation of radium. The procedure allows production of large (units of curies) amounts of radiochemically pure 225Ac and 223Ra, which is promising for wide use of these radionuclides in nuclear medicine.

Keywords

actinium-225 radium-223 proton irradiation extraction chromatography sublimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mulford, D.A., Scheinberg, D.A., and Jurcic, J.G., J. Nucl. Med., 2005, vol. 46, pp. 199S–204S.Google Scholar
  2. 2.
    McDevitt, M.R., Sgouros, G., Finn, R.D., et al., J. Nucl. Med., 1998, vol. 25, pp. 1341–1351.CrossRefGoogle Scholar
  3. 3.
    Khalkin, V.A., Tsupko-Sitnikov, V.V., and Zaitseva, N.G., Radiokhimiya, 1997, vol. 39, no. 6, pp. 481–490.Google Scholar
  4. 4.
    Pavlovich, V.B., Dubinkin, D.O., Kotovskii, A.A., et al., RF Patent 2 2005 81, 2001.Google Scholar
  5. 5.
    Mirzadeh, S. and Garland, M.A., US Patent 2009/0 257 543, 2009.Google Scholar
  6. 6.
    Chuvilin, D.Yu., Il’in, E.K., Markovskii, D.V., and Smetanin, E.Ya., RF Patent 2 199 165, 2001.Google Scholar
  7. 7.
    Baranov, V.Yu. and Marchenkov, N.S., Konvers. Mashinostr., 2000, no. 3, pp. 38–47.Google Scholar
  8. 8.
    Kuznetsov, R.A., Butkalyuk, P.S., Andreev, O.I., et al., Abstracts of Papers, Shestaya Rossiiskaya konferentsiya po radiokhimii “Radiokhimiya-2009” (Sixth Russian Conf. on Radiochemistry “Radiochemistry-2009”), Moscow, October 12–16, 2009, p. 354.Google Scholar
  9. 9.
    Maslov, O.D., Sabel’nikov, A.V., and Dmitriev, S.N., Radiokhimiya, 2006, vol. 48, no. 2, pp. 176–179.Google Scholar
  10. 10.
    Apostolidis, C., Janssens, W., Koch, L., et al., US Patent 6 299 666, 2001.Google Scholar
  11. 11.
    Apostolidis, C., Molinet, R., McGinley, J., et al., Appl. Radiat. Isot., 2005, vol. 62, pp. 383–387.CrossRefGoogle Scholar
  12. 12.
    Bruland, O.S., Nilsson, S., Fischer, D.R., and Larsen, R.H., Clin. Cancer Res., 2006, vol. 12, pp. 6250s–6257s.CrossRefGoogle Scholar
  13. 13.
    Guseva, L.I. and Tikhomirova, G.S., Radiokhimiya, 2002, vol. 44, no. 2, pp. 154–157.Google Scholar
  14. 14.
    Lefort, M.M., Simonoff, G.N., and Tarrago, X., J. Nucl. Phys., 1961, vol. 25, pp. 216–246.CrossRefGoogle Scholar
  15. 15.
    Gauvin, H., J. Phys. Radium, 1963, vol. 24, pp. 836–838.Google Scholar
  16. 16.
    Moskvin, L.N. and Tsaritsyna, L.G., At. Energ., 1968, vol. 24, pp. 383–384.Google Scholar
  17. 17.
    Bonetty, R., Chiesa, C., Guglielmetti, A., et al., Nucl. Phys. A, 1993, vol. 562, pp. 32–40.CrossRefGoogle Scholar
  18. 18.
    Morgenstern, A., Apostolidis, C., Molinet, R., and Lutzenkirchen, K., US Patent 2006/0 072 698, 2006.Google Scholar
  19. 19.
    Zhuikov, B.L., Kokhanyuk, V.M., Konyakhin, N.A., and Vincent, J., Nucl. Instr. Meth. Phys. Res., Sect. A, 1999, vol. 438, pp. 173–179.CrossRefGoogle Scholar
  20. 20.
    Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Ser., Madelung, O., Ed., Nuclear and Particle Physics, vol. 13: Production of Radionuclides at Intermediate Energies, Berlin, S.H., Ed., Springer, 1991.Google Scholar
  21. 21.
    Nikolotova, Z.I. and Kartashova, N.A., Ekstraktsiya neitral’nymi organicheskimi soedineniyami (Extraction with Neutral Organic Compounds), Rozen, A.M., Ed., Moscow: Atomizdat, 1976, vol. 1, p. 66.Google Scholar
  22. 22.
    Horwitz, E.P., Chiarizia, R., Dietz, M.L., et al., Anal. Chim. Acta, 1993, vol. 281, pp. 361–372.CrossRefGoogle Scholar
  23. 23.
    Zvara, I., Belov, V.Z., Domanov, V.P., et al., JINR Report, Dubna, 1976, no. R6-10 334, p. 13.Google Scholar
  24. 24.
    Hubener, S. and Zvara, I., Radiochim. Acta, 1980, vol. 27, pp. 157–160.Google Scholar
  25. 25.
    Zhuikov, B.L., Reetz, T., and Zvara, I., Radiokhimiya, 1986, vol. 28, no. 2, pp. 246–252.Google Scholar
  26. 26.
    Ermolaev, S.V., Zhuikov, B.L., Kokhanyuk, V.M., and Srivastava, S.C., J. Label. Compd. Radiopharm., 2007, vol. 50, pp. 611–612.CrossRefGoogle Scholar
  27. 27.
    Zhuikov, B.L., Kalmykov, S.N., Aliev, R.A., et al., RF Patent 2 373 589, 2008, Byull. Izobret., 2009, Int. Appl. PCT/RU 2009/000 462, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • B. L. Zhuikov
    • 1
  • S. N. Kalmykov
    • 2
  • S. V. Ermolaev
    • 1
  • R. A. Aliev
    • 2
  • V. M. Kokhanyuk
    • 1
  • V. L. Matushko
    • 1
  • I. G. Tananaev
    • 3
  • B. F. Myasoedov
    • 3
  1. 1.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  2. 2.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations